### Abstract

Phase transitions in non-equilibrium steady states of O(n)-symmetric models with reversible mode couplings are studied using dynamic field theory and the renormalization group. The systems are driven out of equilibrium by dynamical anisotropy in the noise for the conserved quantities, i.e., by constraining their diffusive dynamics to be at different temperatures T^{∥} and T^{⊥} in d_{∥}-and d_{⊥}-dimensional subspaces, respectively. In the case of the Sasvári-Schwabl-Szépfalusy (SSS) model for planar ferro-and Isotropic antiferromagnets, we assume a dynamical anisotropy in the noise for the non-critical conserved quantities that are dynamically coupled to the non-conserved order parameter. We find the equilibrium fixed point (with isotropic noise) to be stable with respect to these non-equilibrium perturbations, and the familiar equilibrium exponents therefore describe the asymptotic static and dynamic critical behavior. Novel critical features are only found in extreme limits, where the ratio of the effective noise temperatures T^{∥}/T^{⊥} is either zero or infinite. On the other hand, for model J for isotropic ferromagnets with a conserved order parameter, the dynamical noise anisotropy induces effective long-range elastic forces, which lead to a softening only of the d_{⊥}-dimensional sector in wavevector space with lower noise temperature T^{⊥} < T^{∥}. The ensuing static and dynamic critical behavior is described by power laws of a hitherto unidentified universality class, which, however, is not accessible by perturbational means for d_{∥} ≥ 1. We obtain formal expressions for the novel critical exponents in a double expansion about the static and dynamic upper critical dimensions and d_{∥}, i.e., about the equilibrium theory.

Original language | English |
---|---|

Pages (from-to) | 309-330 |

Number of pages | 22 |

Journal | European Physical Journal B |

Volume | 7 |

Issue number | 2 |

DOIs | |

Publication status | Published - Jan 2 1999 |

### Keywords

- 05.70.Ln Non-equilibrium thermodynamics, irreversible processes
- 64.60.Ak Renormalization-group, fractal, and percolation studies of phase transitions
- 64.60.Ht Dynamic critical phenomena

### ASJC Scopus subject areas

- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics

## Fingerprint Dive into the research topics of 'Non-equilibrium critical behavior of O(n)-symmetric systems: Effect of reversible mode-coupling terms and dynamical anisotropy'. Together they form a unique fingerprint.

## Cite this

*European Physical Journal B*,

*7*(2), 309-330. https://doi.org/10.1007/s100510050617