No distribution is prime

I. Ruzsa, G. J. Székely

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Let ℱ denote the convolution semigroup of probability distributions on the real line. We prove that no element of ℱ is prime in the sense that given an ℱ one can always find two distributions G,H∈ℱ such that F is a convolution factor of G*H but neither of G nor of H. In contrast, ℱ is known to possess many irreducible elements.

Original languageEnglish
Pages (from-to)263-269
Number of pages7
JournalZeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete
Volume70
Issue number2
DOIs
Publication statusPublished - Aug 1985

Fingerprint

Convolution Semigroup
Real Line
Convolution
Probability Distribution
Denote
Probability distribution
Factors

ASJC Scopus subject areas

  • Statistics and Probability
  • Analysis
  • Mathematics(all)

Cite this

No distribution is prime. / Ruzsa, I.; Székely, G. J.

In: Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, Vol. 70, No. 2, 08.1985, p. 263-269.

Research output: Contribution to journalArticle

@article{12357f5779954464846ab7a327bdbb81,
title = "No distribution is prime",
abstract = "Let ℱ denote the convolution semigroup of probability distributions on the real line. We prove that no element of ℱ is prime in the sense that given an ℱ one can always find two distributions G,H∈ℱ such that F is a convolution factor of G*H but neither of G nor of H. In contrast, ℱ is known to possess many irreducible elements.",
author = "I. Ruzsa and Sz{\'e}kely, {G. J.}",
year = "1985",
month = "8",
doi = "10.1007/BF02451431",
language = "English",
volume = "70",
pages = "263--269",
journal = "Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete",
issn = "0178-8051",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - No distribution is prime

AU - Ruzsa, I.

AU - Székely, G. J.

PY - 1985/8

Y1 - 1985/8

N2 - Let ℱ denote the convolution semigroup of probability distributions on the real line. We prove that no element of ℱ is prime in the sense that given an ℱ one can always find two distributions G,H∈ℱ such that F is a convolution factor of G*H but neither of G nor of H. In contrast, ℱ is known to possess many irreducible elements.

AB - Let ℱ denote the convolution semigroup of probability distributions on the real line. We prove that no element of ℱ is prime in the sense that given an ℱ one can always find two distributions G,H∈ℱ such that F is a convolution factor of G*H but neither of G nor of H. In contrast, ℱ is known to possess many irreducible elements.

UR - http://www.scopus.com/inward/record.url?scp=51249174703&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=51249174703&partnerID=8YFLogxK

U2 - 10.1007/BF02451431

DO - 10.1007/BF02451431

M3 - Article

AN - SCOPUS:51249174703

VL - 70

SP - 263

EP - 269

JO - Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete

JF - Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete

SN - 0178-8051

IS - 2

ER -