Negative allometry of docosahexaenoic acid in the fowl lung and pulmonary surfactant phospholipids

Research output: Contribution to journalArticle

1 Citation (Scopus)


In a recent study (Comp. Biochem. Physiol. B. (2010)155: 301-308) we reported that the fatty acids (FA) of the avian (7 species) total lung phospholipids (PL) (i.e. lung parenchyma and surfactant together) provide allometric properties. To test whether this allometric scaling also occurs in either of the above components, in six gallinaceous species, in a body weight range from 150 g (Japanese quail, Coturnix coturnix japonica) to 19 kg (turkey, Meleagris gallopavo) the PL FA composition (mol%) was determined in the pulmonary surfactant, in native and in thoroughly lavaged lungs (referred to as lung parenchyma). In all three components docosahexaenoic acid (DHA) showed significant and negative allometric scaling (B = -0.056, -0.17 and -0.1, respectively). Surfactant PLs provided further negative allometry for palmitic acid and the opposite was found for palmitoleate and arachidonate. In the lung parenchymal PLs increasing body weight was matched with shorter chain FAs (average FA chain length) and competing n6 and n3 end-product fatty acids (positive allometry for arachidonic acid and negative for DHA). Negative allometric scaling was found for the tissue malondialdehyde concentration in the native and lavaged lungs (B = -0.1582 and -0.1594, respectively). In these tissues strong correlation was found between the MDA concentration and DHA proportion (r = 0.439 and 0.679, respectively), denoting the role of DHA in shaping the allometric properties and influencing the extent of in vivo lipid peroxidation of membrane lipids in fowl lungs.

Original languageEnglish
Pages (from-to)202-217
Number of pages16
JournalActa biologica Hungarica
Issue number2
Publication statusPublished - May 1 2012


  • Body weight
  • allometry
  • birds
  • fatty acid
  • lung parenchyma
  • malondialdehyde
  • phospholipid
  • surfactant

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Environmental Science(all)
  • Neurology

Fingerprint Dive into the research topics of 'Negative allometry of docosahexaenoic acid in the fowl lung and pulmonary surfactant phospholipids'. Together they form a unique fingerprint.

  • Cite this