Nanoscale morphology and photoemission of arsenic implanted germanium films

G. Petö, N. Q. Khanh, Z. E. Horváth, G. Molnár, J. Gyulai, E. Kótai, L. Guczi, L. Frey

Research output: Contribution to journalArticle

2 Citations (Scopus)


Germanium films of 140 nm thickness deposited onto Si substrate were implanted with 70 keV arsenic ions with a dose of 2.5× 1014 cm-2. The morphology of the implanted films was determined by Rutherford backscattering and cross-sectional transmission electron microscopy. Concentration of oxygen and carbon impurities and their distribution in the implanted layer were detected by secondary-ion-mass spectroscopy and nuclear reaction analysis using the O16 (He4, He4) O16 reaction. The depth dependence of the valence band density of states was investigated by measuring the energy distribution curve of photoelectrons using Ar ion etching for profiling. The morphology of As implanted film was dominated by nanosized (10-100 nm) Ge islands separated by empty bubbles at a depth of 20-50 nm under the surface. At depth ranges of 0-20 and 70 to a measured depth of 140 nm, however, morphology of the as-evaporated Ge film was not modified. At a depth of 20-50 nm, photoelectron spectra were similar to those obtained for Ge amorphized with heavy ion (Sb) implantation [implantation induced (I.I.) a-Ge]. The depth profile of the morphology and the photoemission data indicate correlation between the morphology and valence band density of states of the ion I.I. a-Ge. As this regime was formed deep in the evaporated film, i.e., isolated from the environment, any contamination, etc., effect can be excluded. The depth distribution of this I.I. a-Ge layer shows that the atomic displacement process cannot account for its formation.

Original languageEnglish
Article number084304
JournalJournal of Applied Physics
Issue number8
Publication statusPublished - May 29 2006


ASJC Scopus subject areas

  • Physics and Astronomy(all)

Cite this