# Multipartite Ramsey numbers for odd cycles

A. Gyárfás, Gàbor N. Sàrközy, Richard H. Schelp

Research output: Contribution to journalArticle

5 Citations (Scopus)

### Abstract

In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n≥5 be an arbitrary positive odd integer; then, in any two-coloring of the edges of the complete 5-partite graph /C((n-1)/2,(n-1)/2,(n-1)/2,(n-1)/2,1) there is a monochromatic C n, a cycle of length n. This roughly says that the Ramsey number for C n (i.e. 2n - 1) will not change (somewhat surprisingly)

Original language English 12-21 10 Journal of Graph Theory 61 1 https://doi.org/10.1002/jgt.20364 Published - May 2009

### Fingerprint

Odd Cycle
Ramsey number
Colouring
Odd
Cycle
Integer
Arbitrary
Graph in graph theory

### ASJC Scopus subject areas

• Geometry and Topology

### Cite this

Multipartite Ramsey numbers for odd cycles. / Gyárfás, A.; Sàrközy, Gàbor N.; Schelp, Richard H.

In: Journal of Graph Theory, Vol. 61, No. 1, 05.2009, p. 12-21.

Research output: Contribution to journalArticle

Gyárfás, A. ; Sàrközy, Gàbor N. ; Schelp, Richard H. / Multipartite Ramsey numbers for odd cycles. In: Journal of Graph Theory. 2009 ; Vol. 61, No. 1. pp. 12-21.
@article{4bea28b5813646a399cc4b9b11a0bbd2,
title = "Multipartite Ramsey numbers for odd cycles",
abstract = "In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n≥5 be an arbitrary positive odd integer; then, in any two-coloring of the edges of the complete 5-partite graph /C((n-1)/2,(n-1)/2,(n-1)/2,(n-1)/2,1) there is a monochromatic C n, a cycle of length n. This roughly says that the Ramsey number for C n (i.e. 2n - 1) will not change (somewhat surprisingly)",
author = "A. Gy{\'a}rf{\'a}s and S{\`a}rk{\"o}zy, {G{\`a}bor N.} and Schelp, {Richard H.}",
year = "2009",
month = "5",
doi = "10.1002/jgt.20364",
language = "English",
volume = "61",
pages = "12--21",
journal = "Journal of Graph Theory",
issn = "0364-9024",
publisher = "Wiley-Liss Inc.",
number = "1",

}

TY - JOUR

T1 - Multipartite Ramsey numbers for odd cycles

AU - Gyárfás, A.

AU - Sàrközy, Gàbor N.

AU - Schelp, Richard H.

PY - 2009/5

Y1 - 2009/5

N2 - In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n≥5 be an arbitrary positive odd integer; then, in any two-coloring of the edges of the complete 5-partite graph /C((n-1)/2,(n-1)/2,(n-1)/2,(n-1)/2,1) there is a monochromatic C n, a cycle of length n. This roughly says that the Ramsey number for C n (i.e. 2n - 1) will not change (somewhat surprisingly)

AB - In this paper we study multipartite Ramsey numbers for odd cycles. We formulate the following conjecture: Let n≥5 be an arbitrary positive odd integer; then, in any two-coloring of the edges of the complete 5-partite graph /C((n-1)/2,(n-1)/2,(n-1)/2,(n-1)/2,1) there is a monochromatic C n, a cycle of length n. This roughly says that the Ramsey number for C n (i.e. 2n - 1) will not change (somewhat surprisingly)

UR - http://www.scopus.com/inward/record.url?scp=67649235805&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=67649235805&partnerID=8YFLogxK

U2 - 10.1002/jgt.20364

DO - 10.1002/jgt.20364

M3 - Article

AN - SCOPUS:67649235805

VL - 61

SP - 12

EP - 21

JO - Journal of Graph Theory

JF - Journal of Graph Theory

SN - 0364-9024

IS - 1

ER -