Multi-dimensional Fejér summability and local Hardy spaces

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W(hp,L ) to W(Lp,L). This implies the almost everywhere convergence of the Fejér means in a cone for all f ∈ W(L1, l), which is larger than L 1(Rd).

Original languageEnglish
Pages (from-to)181-195
Number of pages15
JournalStudia Mathematica
Volume194
Issue number2
DOIs
Publication statusPublished - 2009

Fingerprint

Summability
Hardy Space
Cone
Amalgam
Almost Everywhere Convergence
Maximal Operator
Imply

Keywords

  • Atomic decomposition
  • Fejér summability
  • Fourier transforms
  • Local hardy spaces
  • Wiener amalgam spaces

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Multi-dimensional Fejér summability and local Hardy spaces. / Weisz, F.

In: Studia Mathematica, Vol. 194, No. 2, 2009, p. 181-195.

Research output: Contribution to journalArticle

@article{24ada7f305cb454ab08e19ecc8bff822,
title = "Multi-dimensional Fej{\'e}r summability and local Hardy spaces",
abstract = "It is proved that the multi-dimensional maximal Fej{\'e}r operator defined in a cone is bounded from the amalgam Hardy space W(hp,L ∞) to W(Lp,L∞). This implies the almost everywhere convergence of the Fej{\'e}r means in a cone for all f ∈ W(L1, l∞), which is larger than L 1(Rd).",
keywords = "Atomic decomposition, Fej{\'e}r summability, Fourier transforms, Local hardy spaces, Wiener amalgam spaces",
author = "F. Weisz",
year = "2009",
doi = "10.4064/sm194-2-5",
language = "English",
volume = "194",
pages = "181--195",
journal = "Studia Mathematica",
issn = "0039-3223",
publisher = "Instytut Matematyczny",
number = "2",

}

TY - JOUR

T1 - Multi-dimensional Fejér summability and local Hardy spaces

AU - Weisz, F.

PY - 2009

Y1 - 2009

N2 - It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W(hp,L ∞) to W(Lp,L∞). This implies the almost everywhere convergence of the Fejér means in a cone for all f ∈ W(L1, l∞), which is larger than L 1(Rd).

AB - It is proved that the multi-dimensional maximal Fejér operator defined in a cone is bounded from the amalgam Hardy space W(hp,L ∞) to W(Lp,L∞). This implies the almost everywhere convergence of the Fejér means in a cone for all f ∈ W(L1, l∞), which is larger than L 1(Rd).

KW - Atomic decomposition

KW - Fejér summability

KW - Fourier transforms

KW - Local hardy spaces

KW - Wiener amalgam spaces

UR - http://www.scopus.com/inward/record.url?scp=72149107602&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=72149107602&partnerID=8YFLogxK

U2 - 10.4064/sm194-2-5

DO - 10.4064/sm194-2-5

M3 - Article

AN - SCOPUS:72149107602

VL - 194

SP - 181

EP - 195

JO - Studia Mathematica

JF - Studia Mathematica

SN - 0039-3223

IS - 2

ER -