Motion of spin-labeled side chains in T4 lysozyme: Effect of side chain structure

Hassane S. Mchaourab, Tamás Kálai, Kálmán Hideg, Wayne L. Hubbell

Research output: Contribution to journalArticle

82 Citations (Scopus)

Abstract

Previous studies have shown that the mobility of nitroxide side chains in a protein, inferred from the electron paramagnetic resonance (EPR) spectra, can be used to classify particular sites as helix surface sites, tertiary contact sites, buried sites, or loop sites. In addition, the sequence dependence of mobility can identify regular secondary structure. However, in the most widely used side chain, an apparent interaction of the nitroxide ring with the protein at some helix surface sites gives rise to EPR spectra degenerate with those at tertiary contact sites. In the present study, we use selected sites in T4 lysozyme to evaluate novel nitroxide side chains designed to resolve this degeneracy. The results indicate that the reagent 3-(methanesulfonylthiomethyl)-2,2,5,5-tetramethylpyrrolidin-1-yloxy reacts with cysteine to give a nitroxide side chain that has a high contrast in mobility between helix surface and tertiary contact sites, effectively resolving the degeneracy. The reagent 3-(iodomercuriomethyl)-2,2,5,5- tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxy reacts with cysteine to provide a mercury-linked nitroxide that also shows reduced interaction with the protein at most helix surface sites. Thus, these new side chains may be the preferred choices for structure determination using site-directed spin labeling.

Original languageEnglish
Pages (from-to)2947-2955
Number of pages9
JournalBiochemistry
Volume38
Issue number10
DOIs
Publication statusPublished - Mar 9 1999

    Fingerprint

ASJC Scopus subject areas

  • Biochemistry

Cite this