Magnetic and non-magnetic ground states of the Kondo lattice

P. Fazekas, E. Müller-Hartmann

Research output: Contribution to journalArticle

105 Citations (Scopus)


We use the variational method to investigate the ground state phase diagram of the Kondo lattice Hamiltonian for arbitrary J/W, and conduction electron concentration nc (J is the Kondo coupling and W the bandwidth). We are particularly interested in the question under which circumstances the globally singlet (collective Kondo) Fermi liquid type ground state becomes unstable against magnetic ordering. For the collective Kondo singlet we use the lattice generalization of Yosida's wavefunction which implies the existence of a large Fermi volume, in accordance with Luttinger's theorem. Using the Gutzwiller approximation, we derive closed-form results for the ground state energy at arbitrary J/W and nc, and for the Kondo gap at nc=1. We introduce simple trial states to describe ferromagnetic, antiferromagnetic, and spiral ordering in the small-J (RKKY) regime, and Nagaoka type ferromagnetism at large J/W. We study three particular cases: a band with a constant density of states, and the (tight binding) linear chain, and square lattice periodic Kondo models. We find that the lattice enhancement of the Kondo effect, which is described in our theory of the Fermi liquid state, pushes the RKKY-to-nonmagnetic phase boundary to much smaller values of J/W than it was previously thought. In our study of the square lattice case, we also find a region of itinerant, Nagaoka-type ferromagnetism at large J/W for nc ≦1/3.

Original languageEnglish
Pages (from-to)285-300
Number of pages16
JournalZeitschrift für Physik B Condensed Matter
Issue number2
Publication statusPublished - Jun 1 1991

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Magnetic and non-magnetic ground states of the Kondo lattice'. Together they form a unique fingerprint.

  • Cite this