Lower bounds to the complexity of symmetric Boolean functions

L. Babai, P. Pudlák, V. Rödl, E. Szemerédi

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

We prove Ω(n log n) (Ω(n log n(log log n) 1), respectively) lower bounds on the complexity of an explicity defined symmetric Boolean function and for the majority of symmetric Boolean functions for branching programs of bounded (unbounded, respectively) widths.

Original languageEnglish
Pages (from-to)313-323
Number of pages11
JournalTheoretical Computer Science
Volume74
Issue number3
DOIs
Publication statusPublished - Aug 28 1990

Fingerprint

Boolean functions
Symmetric Functions
Boolean Functions
Branching Programs
Lower bound

ASJC Scopus subject areas

  • Computational Theory and Mathematics

Cite this

Lower bounds to the complexity of symmetric Boolean functions. / Babai, L.; Pudlák, P.; Rödl, V.; Szemerédi, E.

In: Theoretical Computer Science, Vol. 74, No. 3, 28.08.1990, p. 313-323.

Research output: Contribution to journalArticle

Babai, L. ; Pudlák, P. ; Rödl, V. ; Szemerédi, E. / Lower bounds to the complexity of symmetric Boolean functions. In: Theoretical Computer Science. 1990 ; Vol. 74, No. 3. pp. 313-323.
@article{d1c1be6f546e406bba0c845740f580b0,
title = "Lower bounds to the complexity of symmetric Boolean functions",
abstract = "We prove Ω(n log n) (Ω(n log n(log log n) 1), respectively) lower bounds on the complexity of an explicity defined symmetric Boolean function and for the majority of symmetric Boolean functions for branching programs of bounded (unbounded, respectively) widths.",
author = "L. Babai and P. Pudl{\'a}k and V. R{\"o}dl and E. Szemer{\'e}di",
year = "1990",
month = "8",
day = "28",
doi = "10.1016/0304-3975(90)90080-2",
language = "English",
volume = "74",
pages = "313--323",
journal = "Theoretical Computer Science",
issn = "0304-3975",
publisher = "Elsevier",
number = "3",

}

TY - JOUR

T1 - Lower bounds to the complexity of symmetric Boolean functions

AU - Babai, L.

AU - Pudlák, P.

AU - Rödl, V.

AU - Szemerédi, E.

PY - 1990/8/28

Y1 - 1990/8/28

N2 - We prove Ω(n log n) (Ω(n log n(log log n) 1), respectively) lower bounds on the complexity of an explicity defined symmetric Boolean function and for the majority of symmetric Boolean functions for branching programs of bounded (unbounded, respectively) widths.

AB - We prove Ω(n log n) (Ω(n log n(log log n) 1), respectively) lower bounds on the complexity of an explicity defined symmetric Boolean function and for the majority of symmetric Boolean functions for branching programs of bounded (unbounded, respectively) widths.

UR - http://www.scopus.com/inward/record.url?scp=0025475986&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025475986&partnerID=8YFLogxK

U2 - 10.1016/0304-3975(90)90080-2

DO - 10.1016/0304-3975(90)90080-2

M3 - Article

VL - 74

SP - 313

EP - 323

JO - Theoretical Computer Science

JF - Theoretical Computer Science

SN - 0304-3975

IS - 3

ER -