Live cell segmentation in fluorescence microscopy via graph cut

Milán Leskó, Z. Kato, Antal Nagy, I. Gombos, Z. Török, L. Vígh, László Vígh

Research output: Chapter in Book/Report/Conference proceedingConference contribution

12 Citations (Scopus)

Abstract

We propose a novel Markovian segmentation model which takes into account edge information. By construction, the model uses only pairwise interactions and its energy is submodular. Thus the exact energy minima is obtained via a max-flow/min-cut algorithm. The method has been quantitatively evaluated on synthetic images as well as on fluorescence microscopic images of live cells.

Original languageEnglish
Title of host publicationProceedings - International Conference on Pattern Recognition
Pages1485-1488
Number of pages4
DOIs
Publication statusPublished - 2010
Event2010 20th International Conference on Pattern Recognition, ICPR 2010 - Istanbul, Turkey
Duration: Aug 23 2010Aug 26 2010

Other

Other2010 20th International Conference on Pattern Recognition, ICPR 2010
CountryTurkey
CityIstanbul
Period8/23/108/26/10

Fingerprint

Fluorescence microscopy
Fluorescence

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition

Cite this

Leskó, M., Kato, Z., Nagy, A., Gombos, I., Török, Z., Vígh, L., & Vígh, L. (2010). Live cell segmentation in fluorescence microscopy via graph cut. In Proceedings - International Conference on Pattern Recognition (pp. 1485-1488). [5597303] https://doi.org/10.1109/ICPR.2010.367

Live cell segmentation in fluorescence microscopy via graph cut. / Leskó, Milán; Kato, Z.; Nagy, Antal; Gombos, I.; Török, Z.; Vígh, L.; Vígh, László.

Proceedings - International Conference on Pattern Recognition. 2010. p. 1485-1488 5597303.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Leskó, M, Kato, Z, Nagy, A, Gombos, I, Török, Z, Vígh, L & Vígh, L 2010, Live cell segmentation in fluorescence microscopy via graph cut. in Proceedings - International Conference on Pattern Recognition., 5597303, pp. 1485-1488, 2010 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 8/23/10. https://doi.org/10.1109/ICPR.2010.367
Leskó M, Kato Z, Nagy A, Gombos I, Török Z, Vígh L et al. Live cell segmentation in fluorescence microscopy via graph cut. In Proceedings - International Conference on Pattern Recognition. 2010. p. 1485-1488. 5597303 https://doi.org/10.1109/ICPR.2010.367
Leskó, Milán ; Kato, Z. ; Nagy, Antal ; Gombos, I. ; Török, Z. ; Vígh, L. ; Vígh, László. / Live cell segmentation in fluorescence microscopy via graph cut. Proceedings - International Conference on Pattern Recognition. 2010. pp. 1485-1488
@inproceedings{b151399d147242608e7172013c41862d,
title = "Live cell segmentation in fluorescence microscopy via graph cut",
abstract = "We propose a novel Markovian segmentation model which takes into account edge information. By construction, the model uses only pairwise interactions and its energy is submodular. Thus the exact energy minima is obtained via a max-flow/min-cut algorithm. The method has been quantitatively evaluated on synthetic images as well as on fluorescence microscopic images of live cells.",
author = "Mil{\'a}n Lesk{\'o} and Z. Kato and Antal Nagy and I. Gombos and Z. T{\"o}r{\"o}k and L. V{\'i}gh and L{\'a}szl{\'o} V{\'i}gh",
year = "2010",
doi = "10.1109/ICPR.2010.367",
language = "English",
isbn = "9780769541099",
pages = "1485--1488",
booktitle = "Proceedings - International Conference on Pattern Recognition",

}

TY - GEN

T1 - Live cell segmentation in fluorescence microscopy via graph cut

AU - Leskó, Milán

AU - Kato, Z.

AU - Nagy, Antal

AU - Gombos, I.

AU - Török, Z.

AU - Vígh, L.

AU - Vígh, László

PY - 2010

Y1 - 2010

N2 - We propose a novel Markovian segmentation model which takes into account edge information. By construction, the model uses only pairwise interactions and its energy is submodular. Thus the exact energy minima is obtained via a max-flow/min-cut algorithm. The method has been quantitatively evaluated on synthetic images as well as on fluorescence microscopic images of live cells.

AB - We propose a novel Markovian segmentation model which takes into account edge information. By construction, the model uses only pairwise interactions and its energy is submodular. Thus the exact energy minima is obtained via a max-flow/min-cut algorithm. The method has been quantitatively evaluated on synthetic images as well as on fluorescence microscopic images of live cells.

UR - http://www.scopus.com/inward/record.url?scp=78149486419&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78149486419&partnerID=8YFLogxK

U2 - 10.1109/ICPR.2010.367

DO - 10.1109/ICPR.2010.367

M3 - Conference contribution

SN - 9780769541099

SP - 1485

EP - 1488

BT - Proceedings - International Conference on Pattern Recognition

ER -