Lattice boltzmann simulation of two-dimensional wall bounded turbulent flow

Gábor Házi, Gábor Tóth

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

This paper reports on a numerical study of two-dimensional decaying turbulence in a square domain with no-slip walls. The generation of strong small-scale vortices near the no-slip walls have been observed in the lattice Boltzmann simulations just like in earlier pseudospectral calculations. Due to these vortices the enstrophy is not a monotone decaying function of time. Considering a number of simulations and taking their ensemble average, we have found that the decay of enstrophy and that of the kinetic energy can be described well by power-laws. The exponents of these laws depend on the Reynolds number in a similar manner than was observed before in pseudospectral simulations. Considering the ensemble averaged 1D Fourier energy spectra calculated along the walls, we could not find a simple power-law, which fits well to the simulation data. These spectra change in time and reveal an exponent close to -3 in the intermediate and an exponent -5/3 at low wavenumbers. On the other hand, the two-dimensional energy spectra, which remain almost steady in the intermediate decay stage, show clear power-law behavior with exponent larger than -3 depending on the initial Reynolds number.

Original languageEnglish
Pages (from-to)669-680
Number of pages12
JournalInternational Journal of Modern Physics C
Volume21
Issue number5
DOIs
Publication statusPublished - May 1 2010

    Fingerprint

Keywords

  • Lattice Boltzmann method
  • No-slip walls
  • Two-dimensional turbulence

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Theory and Mathematics

Cite this