Lateral instabilities of cubic autocatalytic reaction fronts in a constant electric field

Ágota Tóth, Dezso Horváth, Wim Van Saarloos

Research output: Contribution to journalArticle

25 Citations (Scopus)


The region of instability for planar reaction fronts of cubic autocatalysis between ionic species under constant electric field has been determined accurately. The ratio of diffusion coefficients at the onset of instability δcr is substantially varied by the component-dependent drift and directly proportional to the concentration of the autocatalyst behind the front βs as δcr=2.3002βs. This opens the possibility to use electric field as a control parameter for reaction-front instabilities. The dispersion relation calculated from the linear stability analysis of the full system is in good agreement with the initial evolution of the Fourier modes associated with the slightly perturbed planar reaction front obtained by the direct integration of the governing equations in two spatial dimensions.

Original languageEnglish
Pages (from-to)10964-10968
Number of pages5
JournalJournal of Chemical Physics
Issue number24
Publication statusPublished - Dec 22 1999


ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this