Large-scale proteomics analysis of the human kinome

Felix S. Oppermann, Florian Gnad, Jesper V. Olsen, Renate Hornberger, Zoltán Greff, György Kéri, Matthias Mann, Henrik Daub

Research output: Contribution to journalArticle

227 Citations (Scopus)

Abstract

Members of the human protein kinase superfamily are the major regulatory enzymes involved in the activity control of eukaryotic signal transduction pathways. As protein kinases reside at the nodes of phosphorylation-based signal transmission, comprehensive analysis of their cellular expression and site-specific phosphorylation can provide important insights into the architecture and functionality of signaling networks. However, in global proteome studies, low cellular abundance of protein kinases often results in rather minor peptide species that are occluded by a vast excess of peptides from other cellular proteins. These analytical limitations create a rationale for kinomewide enrichment of protein kinases prior to mass spectrometry analysis. Here, we employed stable isotope labeling by amino acids in cell culture (SILAC) to compare the binding characteristics of three kinase-selective affinity resins by quantitative mass spectrometry. The evaluated pre-fractionation tools possessed pyrido[2,3-d]pyrimidine-based kinase inhibitors as immobilized capture ligands and retained considerable subsets of the human kinome. Based on these results, an affinity resin displaying the broadly selective kinase ligand VI16832 was employed to quantify the relative expression of more than 170 protein kinases across three different, SILAC-encoded cancer cell lines. These experiments demonstrated the feasibility of comparative kinome profiling in a compact experimental format. Interestingly, we found high levels of cytoplasmic and low levels of receptor tyrosine kinases in MV4-11 leukemia cells compared with the adherent cancer lines HCT116 and MDA-MB-435S. The VI16832 resin was further exploited to pre-fractionate kinases for targeted phosphoproteomics analysis, which revealed about 1200 distinct phosphorylation sites on more than 200 protein kinases. This hitherto largest survey of site-specific phosphorylation across the kinome significantly expands the basis for functional follow-up studies on protein kinase regulation. In conclusion, the straightforward experimental procedures described here enable different implementations of kinase-selective proteomics with considerable potential for future signal transduction and kinase drug target analysis.

Original languageEnglish
Pages (from-to)1751-1764
Number of pages14
JournalMolecular and Cellular Proteomics
Volume8
Issue number7
DOIs
Publication statusPublished - 2009

ASJC Scopus subject areas

  • Analytical Chemistry
  • Biochemistry
  • Molecular Biology

Fingerprint Dive into the research topics of 'Large-scale proteomics analysis of the human kinome'. Together they form a unique fingerprint.

  • Cite this

    Oppermann, F. S., Gnad, F., Olsen, J. V., Hornberger, R., Greff, Z., Kéri, G., Mann, M., & Daub, H. (2009). Large-scale proteomics analysis of the human kinome. Molecular and Cellular Proteomics, 8(7), 1751-1764. https://doi.org/10.1074/mcp.M800588-MCP200