Laminar population analysis: Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex

Gaute T. Einevoll, Klas H. Pettersen, Anna Devor, I. Ulbert, Eric Halgren, Anders M. Dale

Research output: Contribution to journalArticle

95 Citations (Scopus)

Abstract

We present a new method, laminar population analysis (LPA), for analysis of laminar-electrode (linear multielectrode) data, where physiological constraints are explicitly incorporated in the mathematical model: the high-frequency band [multiunit activity (MUA)] is modeled as a sum over contributions from firing activity of multiple cortical populations, whereas the low-frequency band [local field potential (LFP)] is assumed to reflect the dendritic currents caused by synaptic inputs evoked by this firing. The method is applied to stimulus-averaged laminar-electrode data from barrel cortex of anesthetized rat after single whisker flicks. Two sample data sets, distinguished by stimulus paradigm, type of applied anesthesia, and electrical boundary conditions, are studied in detail. These data sets are well accounted for by a model with four cortical populations: one supragranular, one granular, and two infragranular populations. Population current source densities (CSDs; the CSD signatures after firing in a particular population) provided by LPA are further used to estimate the synaptic connection pattern between the various populations using a new LFP template-fitting technique, where LFP population templates are found by the electrostatic forward solution based on results from compartmental modeling of morphologically reconstructed neurons. Our analysis confirms previous experimental findings regarding the synaptic connections from neurons in the granular layer onto neurons in the supragranular layers and provides predictions about other synaptic connections. Furthermore, the time dependence of the stimulus-evoked population firing activity is predicted, and the temporal ordering of response onset is found to be compatible with earlier findings.

Original languageEnglish
Pages (from-to)2174-2190
Number of pages17
JournalJournal of Neurophysiology
Volume97
Issue number3
DOIs
Publication statusPublished - Mar 2007

Fingerprint

Population
Neurons
Electrodes
Vibrissae
Static Electricity
Theoretical Models
Anesthesia
Datasets

ASJC Scopus subject areas

  • Physiology
  • Neuroscience(all)

Cite this

Laminar population analysis : Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. / Einevoll, Gaute T.; Pettersen, Klas H.; Devor, Anna; Ulbert, I.; Halgren, Eric; Dale, Anders M.

In: Journal of Neurophysiology, Vol. 97, No. 3, 03.2007, p. 2174-2190.

Research output: Contribution to journalArticle

Einevoll, Gaute T. ; Pettersen, Klas H. ; Devor, Anna ; Ulbert, I. ; Halgren, Eric ; Dale, Anders M. / Laminar population analysis : Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex. In: Journal of Neurophysiology. 2007 ; Vol. 97, No. 3. pp. 2174-2190.
@article{cd54873251464937819a3859314519c1,
title = "Laminar population analysis: Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex",
abstract = "We present a new method, laminar population analysis (LPA), for analysis of laminar-electrode (linear multielectrode) data, where physiological constraints are explicitly incorporated in the mathematical model: the high-frequency band [multiunit activity (MUA)] is modeled as a sum over contributions from firing activity of multiple cortical populations, whereas the low-frequency band [local field potential (LFP)] is assumed to reflect the dendritic currents caused by synaptic inputs evoked by this firing. The method is applied to stimulus-averaged laminar-electrode data from barrel cortex of anesthetized rat after single whisker flicks. Two sample data sets, distinguished by stimulus paradigm, type of applied anesthesia, and electrical boundary conditions, are studied in detail. These data sets are well accounted for by a model with four cortical populations: one supragranular, one granular, and two infragranular populations. Population current source densities (CSDs; the CSD signatures after firing in a particular population) provided by LPA are further used to estimate the synaptic connection pattern between the various populations using a new LFP template-fitting technique, where LFP population templates are found by the electrostatic forward solution based on results from compartmental modeling of morphologically reconstructed neurons. Our analysis confirms previous experimental findings regarding the synaptic connections from neurons in the granular layer onto neurons in the supragranular layers and provides predictions about other synaptic connections. Furthermore, the time dependence of the stimulus-evoked population firing activity is predicted, and the temporal ordering of response onset is found to be compatible with earlier findings.",
author = "Einevoll, {Gaute T.} and Pettersen, {Klas H.} and Anna Devor and I. Ulbert and Eric Halgren and Dale, {Anders M.}",
year = "2007",
month = "3",
doi = "10.1152/jn.00845.2006",
language = "English",
volume = "97",
pages = "2174--2190",
journal = "Journal of Neurophysiology",
issn = "0022-3077",
publisher = "American Physiological Society",
number = "3",

}

TY - JOUR

T1 - Laminar population analysis

T2 - Estimating firing rates and evoked synaptic activity from multielectrode recordings in rat barrel cortex

AU - Einevoll, Gaute T.

AU - Pettersen, Klas H.

AU - Devor, Anna

AU - Ulbert, I.

AU - Halgren, Eric

AU - Dale, Anders M.

PY - 2007/3

Y1 - 2007/3

N2 - We present a new method, laminar population analysis (LPA), for analysis of laminar-electrode (linear multielectrode) data, where physiological constraints are explicitly incorporated in the mathematical model: the high-frequency band [multiunit activity (MUA)] is modeled as a sum over contributions from firing activity of multiple cortical populations, whereas the low-frequency band [local field potential (LFP)] is assumed to reflect the dendritic currents caused by synaptic inputs evoked by this firing. The method is applied to stimulus-averaged laminar-electrode data from barrel cortex of anesthetized rat after single whisker flicks. Two sample data sets, distinguished by stimulus paradigm, type of applied anesthesia, and electrical boundary conditions, are studied in detail. These data sets are well accounted for by a model with four cortical populations: one supragranular, one granular, and two infragranular populations. Population current source densities (CSDs; the CSD signatures after firing in a particular population) provided by LPA are further used to estimate the synaptic connection pattern between the various populations using a new LFP template-fitting technique, where LFP population templates are found by the electrostatic forward solution based on results from compartmental modeling of morphologically reconstructed neurons. Our analysis confirms previous experimental findings regarding the synaptic connections from neurons in the granular layer onto neurons in the supragranular layers and provides predictions about other synaptic connections. Furthermore, the time dependence of the stimulus-evoked population firing activity is predicted, and the temporal ordering of response onset is found to be compatible with earlier findings.

AB - We present a new method, laminar population analysis (LPA), for analysis of laminar-electrode (linear multielectrode) data, where physiological constraints are explicitly incorporated in the mathematical model: the high-frequency band [multiunit activity (MUA)] is modeled as a sum over contributions from firing activity of multiple cortical populations, whereas the low-frequency band [local field potential (LFP)] is assumed to reflect the dendritic currents caused by synaptic inputs evoked by this firing. The method is applied to stimulus-averaged laminar-electrode data from barrel cortex of anesthetized rat after single whisker flicks. Two sample data sets, distinguished by stimulus paradigm, type of applied anesthesia, and electrical boundary conditions, are studied in detail. These data sets are well accounted for by a model with four cortical populations: one supragranular, one granular, and two infragranular populations. Population current source densities (CSDs; the CSD signatures after firing in a particular population) provided by LPA are further used to estimate the synaptic connection pattern between the various populations using a new LFP template-fitting technique, where LFP population templates are found by the electrostatic forward solution based on results from compartmental modeling of morphologically reconstructed neurons. Our analysis confirms previous experimental findings regarding the synaptic connections from neurons in the granular layer onto neurons in the supragranular layers and provides predictions about other synaptic connections. Furthermore, the time dependence of the stimulus-evoked population firing activity is predicted, and the temporal ordering of response onset is found to be compatible with earlier findings.

UR - http://www.scopus.com/inward/record.url?scp=33947149545&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33947149545&partnerID=8YFLogxK

U2 - 10.1152/jn.00845.2006

DO - 10.1152/jn.00845.2006

M3 - Article

C2 - 17182911

AN - SCOPUS:33947149545

VL - 97

SP - 2174

EP - 2190

JO - Journal of Neurophysiology

JF - Journal of Neurophysiology

SN - 0022-3077

IS - 3

ER -