Kondo effect and STM spectra through ferromagnetic nanoclusters

Gregory A. Fiete, Gergely Zarand, Bertrand I. Halperin, Yuval Oreg

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Motivated by recent scanning tunneling microscope (STM) experiments on cobalt clusters adsorbed on single-wall metallic nanotubes [Odom et al., Science 290, 1549 (2000)], we study theoretically the size dependence of STM spectra and spin-flip scattering of electrons from finite size ferromagnetic clusters adsorbed on metallic surfaces. We study two models of nanometer size ferromagnets. (i) An itinerant model with delocalized s, p, and d electrons and (ii) a local moment model with both localized d-level spins and delocalized cluster electrons. The effective exchange coupling between the spin of the cluster and the conduction electrons of the metallic substrate depends on the specific details of the single-particle density of states on the cluster. The calculated Kondo coupling is inversely proportional to the total spin of the ferromagnetic cluster in both models and thus the Kondo temperature is rapidly suppressed as the size of the cluster increases. Mesoscopic fluctuations in the charging energies and magnetization of nanoclusters can lead to large fluctuations in the Kondo temperatures and a very asymmetric voltage dependence of the STM spectra. We compare our results to the experiments.

Original languageEnglish
Article number024431
Pages (from-to)244311-2443117
Number of pages2198807
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume66
Issue number2
DOIs
Publication statusPublished - Jul 1 2002

    Fingerprint

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Cite this