Kinetic mechanism of human dUTPase, an essential nucleotide pyrophosphatase enzyme

Research output: Contribution to journalArticle

50 Citations (Scopus)


Human dUTPase is essential in controlling relative cellular levels of dTTP/dUTP, both of which can be incorporated into DNA. The nuclear isoform of the enzyme has been proposed as a promising novel target for anticancer chemotherapeutic strategies. The recently determined three-dimensional structure of this protein in complex with an isosteric substrate analogue allowed in-depth structural characterization of the active site. However, fundamental steps of the dUTPase enzymatic cycle have not yet been revealed. This knowledge is indispensable for a functional understanding of the molecular mechanism and can also contribute to the design of potential antagonists. Here we present detailed pre-steady-state and steady-state kinetic investigations using a single tryptophan fluorophore engineered into the active site of human dUTPase. This sensor allowed distinction of the apoenzyme, enzyme-substrate, and enzyme-product complexes. We show that the dUTP hydrolysis cycle consists of at least four distinct enzymatic steps: (i) fast substrate binding, (ii) isomerization of the enzyme-substrate complex into the catalytically competent conformation, (iii) a hydrolysis (chemical) step, and (iv) rapid, nonordered release of the products. Independent quenched-flow experiments indicate that the chemical step is the rate-limiting step of the enzymatic cycle. To follow the reaction in the quenched-flow, we devised a novel method to synthesize γ-32P-labeled dUTP. We also determined by indicator-based rapid kinetic assays that proton release is concomitant with the rate-limiting hydrolysis step. Our results led to a quantitative kinetic model of the human dUTPase catalytic cycle and to direct assessment of relative flexibilities of the C-terminal arm, critical for enzyme activity, in the enzyme-ligand complexes along the reaction pathway.

Original languageEnglish
Pages (from-to)33572-33582
Number of pages11
JournalJournal of Biological Chemistry
Issue number46
Publication statusPublished - Nov 16 2007


ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Cite this