Jensen’s inequality for positive contractions on operator algebras

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Let T be a normal semifinite trace on a von Neumann algebra, and let f be a continuous convex function on the interval [0, ∞) with f(0) = 0. For a positive element a of the algebra and a positive contraction α on the algebra, the following inequality is obtained: T(f(α(a))) ≤ T(α(f(a))).

Original languageEnglish
Pages (from-to)273-277
Number of pages5
JournalProceedings of the American Mathematical Society
Volume99
Issue number2
DOIs
Publication statusPublished - 1987

Fingerprint

Jensen's inequality
Operator Algebras
Algebra
Mathematical operators
Contraction
Von Neumann Algebra
Convex function
Continuous Function
Trace
Interval

Keywords

  • Convex function
  • Jensen’s inequality
  • Trace
  • Von Neumann algebra

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Jensen’s inequality for positive contractions on operator algebras. / Petz, D.

In: Proceedings of the American Mathematical Society, Vol. 99, No. 2, 1987, p. 273-277.

Research output: Contribution to journalArticle

@article{ea7658bb0eb8418ebd239aad30d78ac5,
title = "Jensen’s inequality for positive contractions on operator algebras",
abstract = "Let T be a normal semifinite trace on a von Neumann algebra, and let f be a continuous convex function on the interval [0, ∞) with f(0) = 0. For a positive element a of the algebra and a positive contraction α on the algebra, the following inequality is obtained: T(f(α(a))) ≤ T(α(f(a))).",
keywords = "Convex function, Jensen’s inequality, Trace, Von Neumann algebra",
author = "D. Petz",
year = "1987",
doi = "10.1090/S0002-9939-1987-0870784-0",
language = "English",
volume = "99",
pages = "273--277",
journal = "Proceedings of the American Mathematical Society",
issn = "0002-9939",
publisher = "American Mathematical Society",
number = "2",

}

TY - JOUR

T1 - Jensen’s inequality for positive contractions on operator algebras

AU - Petz, D.

PY - 1987

Y1 - 1987

N2 - Let T be a normal semifinite trace on a von Neumann algebra, and let f be a continuous convex function on the interval [0, ∞) with f(0) = 0. For a positive element a of the algebra and a positive contraction α on the algebra, the following inequality is obtained: T(f(α(a))) ≤ T(α(f(a))).

AB - Let T be a normal semifinite trace on a von Neumann algebra, and let f be a continuous convex function on the interval [0, ∞) with f(0) = 0. For a positive element a of the algebra and a positive contraction α on the algebra, the following inequality is obtained: T(f(α(a))) ≤ T(α(f(a))).

KW - Convex function

KW - Jensen’s inequality

KW - Trace

KW - Von Neumann algebra

UR - http://www.scopus.com/inward/record.url?scp=84968476234&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84968476234&partnerID=8YFLogxK

U2 - 10.1090/S0002-9939-1987-0870784-0

DO - 10.1090/S0002-9939-1987-0870784-0

M3 - Article

VL - 99

SP - 273

EP - 277

JO - Proceedings of the American Mathematical Society

JF - Proceedings of the American Mathematical Society

SN - 0002-9939

IS - 2

ER -