Jensen-type inequalities for Sugeno integral

Sadegh Abbaszadeh, Madjid Eshaghi Gordji, E. Pap, Anikó Szakál

Research output: Contribution to journalArticle

13 Citations (Scopus)

Abstract

In this paper, the classical Jensen inequalities for concave function φ, i.e.,φ(∫f(x)dμ)⩾∫φ(f)dμandφ(∑i=1nλixi)⩾∑i=1nλiφ(xi),are adapted for the Sugeno integral using the notion of the supergradient. Moreover, we give some modifications of previous results of Román-Flores et al. concerning Jensen-type inequalities for Sugeno integral. Some examples in the framework of the Lebesgue measure and counting measure to illustrate the results are presented.

Original languageEnglish
Pages (from-to)148-157
Number of pages10
JournalInformation Sciences
Volume376
DOIs
Publication statusPublished - Jan 10 2017

Fingerprint

Sugeno Integral
Jensen's inequality
Concave function
Lebesgue Measure
Counting
Integral
Framework

Keywords

  • Concave function
  • Sugeno integral
  • Superdifferential
  • Supergradient
  • The Jensen inequality

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Theoretical Computer Science
  • Software
  • Computer Science Applications
  • Information Systems and Management
  • Artificial Intelligence

Cite this

Jensen-type inequalities for Sugeno integral. / Abbaszadeh, Sadegh; Gordji, Madjid Eshaghi; Pap, E.; Szakál, Anikó.

In: Information Sciences, Vol. 376, 10.01.2017, p. 148-157.

Research output: Contribution to journalArticle

Abbaszadeh, Sadegh ; Gordji, Madjid Eshaghi ; Pap, E. ; Szakál, Anikó. / Jensen-type inequalities for Sugeno integral. In: Information Sciences. 2017 ; Vol. 376. pp. 148-157.
@article{65f2a63847ac4f7cbb7adc23b4abe00f,
title = "Jensen-type inequalities for Sugeno integral",
abstract = "In this paper, the classical Jensen inequalities for concave function φ, i.e.,φ(∫f(x)dμ)⩾∫φ(f)dμandφ(∑i=1nλixi)⩾∑i=1nλiφ(xi),are adapted for the Sugeno integral using the notion of the supergradient. Moreover, we give some modifications of previous results of Rom{\'a}n-Flores et al. concerning Jensen-type inequalities for Sugeno integral. Some examples in the framework of the Lebesgue measure and counting measure to illustrate the results are presented.",
keywords = "Concave function, Sugeno integral, Superdifferential, Supergradient, The Jensen inequality",
author = "Sadegh Abbaszadeh and Gordji, {Madjid Eshaghi} and E. Pap and Anik{\'o} Szak{\'a}l",
year = "2017",
month = "1",
day = "10",
doi = "10.1016/j.ins.2016.10.006",
language = "English",
volume = "376",
pages = "148--157",
journal = "Information Sciences",
issn = "0020-0255",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Jensen-type inequalities for Sugeno integral

AU - Abbaszadeh, Sadegh

AU - Gordji, Madjid Eshaghi

AU - Pap, E.

AU - Szakál, Anikó

PY - 2017/1/10

Y1 - 2017/1/10

N2 - In this paper, the classical Jensen inequalities for concave function φ, i.e.,φ(∫f(x)dμ)⩾∫φ(f)dμandφ(∑i=1nλixi)⩾∑i=1nλiφ(xi),are adapted for the Sugeno integral using the notion of the supergradient. Moreover, we give some modifications of previous results of Román-Flores et al. concerning Jensen-type inequalities for Sugeno integral. Some examples in the framework of the Lebesgue measure and counting measure to illustrate the results are presented.

AB - In this paper, the classical Jensen inequalities for concave function φ, i.e.,φ(∫f(x)dμ)⩾∫φ(f)dμandφ(∑i=1nλixi)⩾∑i=1nλiφ(xi),are adapted for the Sugeno integral using the notion of the supergradient. Moreover, we give some modifications of previous results of Román-Flores et al. concerning Jensen-type inequalities for Sugeno integral. Some examples in the framework of the Lebesgue measure and counting measure to illustrate the results are presented.

KW - Concave function

KW - Sugeno integral

KW - Superdifferential

KW - Supergradient

KW - The Jensen inequality

UR - http://www.scopus.com/inward/record.url?scp=84992200219&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84992200219&partnerID=8YFLogxK

U2 - 10.1016/j.ins.2016.10.006

DO - 10.1016/j.ins.2016.10.006

M3 - Article

VL - 376

SP - 148

EP - 157

JO - Information Sciences

JF - Information Sciences

SN - 0020-0255

ER -