Iteration Theories of Synchronization Trees

S. L. Bloom, Z. Ésik, D. Taubner

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Synchronization trees are shown to form an iteration theory in a natural way. The class of grove theories is introduced. The regular synchronization trees are shown to be the free theories in the subclass of synchronization theories. Moreover. the bisimulation equivalence classes of regular synchronization trees are shown to be the free synchronization theories satisfying an "infinite" idempotency law.

Original languageEnglish
Pages (from-to)1-55
Number of pages55
JournalInformation and Computation
Volume102
Issue number1
DOIs
Publication statusPublished - Jan 1993

Fingerprint

Synchronization
Iteration
Equivalence classes
Bisimulation
Equivalence class

ASJC Scopus subject areas

  • Computational Theory and Mathematics

Cite this

Iteration Theories of Synchronization Trees. / Bloom, S. L.; Ésik, Z.; Taubner, D.

In: Information and Computation, Vol. 102, No. 1, 01.1993, p. 1-55.

Research output: Contribution to journalArticle

Bloom, S. L. ; Ésik, Z. ; Taubner, D. / Iteration Theories of Synchronization Trees. In: Information and Computation. 1993 ; Vol. 102, No. 1. pp. 1-55.
@article{570452c3e00c467db47ead160279c3f9,
title = "Iteration Theories of Synchronization Trees",
abstract = "Synchronization trees are shown to form an iteration theory in a natural way. The class of grove theories is introduced. The regular synchronization trees are shown to be the free theories in the subclass of synchronization theories. Moreover. the bisimulation equivalence classes of regular synchronization trees are shown to be the free synchronization theories satisfying an {"}infinite{"} idempotency law.",
author = "Bloom, {S. L.} and Z. {\'E}sik and D. Taubner",
year = "1993",
month = "1",
doi = "10.1006/inco.1993.1001",
language = "English",
volume = "102",
pages = "1--55",
journal = "Information and Computation",
issn = "0890-5401",
publisher = "Elsevier Inc.",
number = "1",

}

TY - JOUR

T1 - Iteration Theories of Synchronization Trees

AU - Bloom, S. L.

AU - Ésik, Z.

AU - Taubner, D.

PY - 1993/1

Y1 - 1993/1

N2 - Synchronization trees are shown to form an iteration theory in a natural way. The class of grove theories is introduced. The regular synchronization trees are shown to be the free theories in the subclass of synchronization theories. Moreover. the bisimulation equivalence classes of regular synchronization trees are shown to be the free synchronization theories satisfying an "infinite" idempotency law.

AB - Synchronization trees are shown to form an iteration theory in a natural way. The class of grove theories is introduced. The regular synchronization trees are shown to be the free theories in the subclass of synchronization theories. Moreover. the bisimulation equivalence classes of regular synchronization trees are shown to be the free synchronization theories satisfying an "infinite" idempotency law.

UR - http://www.scopus.com/inward/record.url?scp=0002723328&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0002723328&partnerID=8YFLogxK

U2 - 10.1006/inco.1993.1001

DO - 10.1006/inco.1993.1001

M3 - Article

AN - SCOPUS:0002723328

VL - 102

SP - 1

EP - 55

JO - Information and Computation

JF - Information and Computation

SN - 0890-5401

IS - 1

ER -