Isolation and characterization of dominant female sterile mutations of Drosophila melanogaster. II. Mutations on the second chromosome.

J. Szabad, M. Erdélyi, G. Hoffmann, J. Szidonya, T. R. Wright

Research output: Contribution to journalArticle

31 Citations (Scopus)


Twenty-four, second chromosome, dominant female sterile (Fs) mutations in Drosophila are described. Fs(2) were isolated at a frequency of approximately 1 per 1000 EMS-treated chromosomes screened. In comparison the isolation of frequency for second chromosome zygotic recessive lethal mutations was approximately 550 per 1000. Complementation analysis of the Fs(2) revertants showed that the 24 Fs(2) mutations identify 13-15 loci, calculated to be about 65-75% of the second chromosome genes EMS mutable to dominant female sterility. Two of the Fs(2) mutations are useful tools for the dominant female sterile technique: Fs(2)1 for induction and detection of germ-line clones and Fs(2)Ugra for follicle cell clones. Several of the Fs(2) mutations bring about novel mutant phenotypes. Seven of them alter egg shape, whereas the others arrest development primarily at two stages: around fertilization by five Fs(2) and during cleavage divisions [by Fs(2) in three loci]. The remaining that allow development to the larval stage of differentiation include four new dorsal alleles and one dominant torso allele. Analysis of germ-line chimeras revealed that with two exceptions all the Fs(2) mutations are germ-line dependent. The Fs(2) mutations were mapped mainly on the basis of mitotic recombination induced in the female germ-line cells of adult females. That most of the Fs(2) may be gain-of-function mutations is indicated by the unusual behavior of the Fs+ germ-line clones and also by the fact that 90% of the could be induced to revert.

Original languageEnglish
Pages (from-to)823-835
Number of pages13
Issue number4
Publication statusPublished - Aug 1989


ASJC Scopus subject areas

  • Genetics

Cite this