Investigation of silver nanoparticles on titanium surface created by ion implantation technology

István Lampé, Dezső Beke, Sándor Biri, István Csarnovics, Attila Csik, Zsuzsanna Dombrádi, Péter Hajdu, Viktória Hegedűs, Richárd Rácz, István Varga, Csaba Hegedűs

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Objectives: Using dental Ti implants has become a well-accepted and used method for replacing missing dentition. It has become evident that in many cases peri-implant inflammation develops. The objective was to create and evaluate the antibacterial effect of silver nanoparticle (Ag-NP) coated Ti surfaces that can help to prevent such processes if applied on the surface of dental implants. Methods: Annealing I, Ag ion implantation by the beam of an Electron Cyclotron Resonance Ion Source (ECRIS), Ag Physical Vapor Deposition (PVD), Annealing II procedures were used, respectively, to create a safely anchored Ag-NP layer on 1x1 cm2 Grade 2 titanium samples. The antibacterial effect was evaluated by culturing Staphylococcus aureus (ATCC 29213) on the surfaces of the samples for 8 hours, and comparing the results to that of glass as control and of pure titanium samples. Alamar Blue assay was carried out to check cytotoxicity. Results: It was proved that silver nanoparticles were present on the treated surfaces. The average diameter of the particles was 58 nm, with a 25 nm deviation and Gaussian distribution, the the filling factor was 25%. Antibacterial evaluation revealed that the nanoparticle covered samples had an antibacterial effect of 64.6% that was statistically significant. Tests also proved that the nanoparticles are safely anchored to the titanium surface and are not cytotoxic. Conclusion: Creating a silver nanoparticle layer can be an option to add antibacterial features to the implant surface and to help in the prevention of peri-implant inflammatory processes. Recent studies demonstrated that silver nanoparticles can induce pathology in mammal cells, thus safe fixation of the particles is essential to prevent them from getting into the circulation.

Original languageEnglish
Pages (from-to)4709-4721
Number of pages13
JournalInternational journal of nanomedicine
Volume14
DOIs
Publication statusPublished - 2019

Keywords

  • Antibacterial effect
  • Cytocompatibility
  • Geometrical model
  • Implants
  • Oxyde layer
  • Peri-implant inflammation
  • Physical vapor deposition

ASJC Scopus subject areas

  • Biophysics
  • Bioengineering
  • Biomaterials
  • Pharmaceutical Science
  • Drug Discovery
  • Organic Chemistry

Fingerprint Dive into the research topics of 'Investigation of silver nanoparticles on titanium surface created by ion implantation technology'. Together they form a unique fingerprint.

  • Cite this

    Lampé, I., Beke, D., Biri, S., Csarnovics, I., Csik, A., Dombrádi, Z., Hajdu, P., Hegedűs, V., Rácz, R., Varga, I., & Hegedűs, C. (2019). Investigation of silver nanoparticles on titanium surface created by ion implantation technology. International journal of nanomedicine, 14, 4709-4721. https://doi.org/10.2147/IJN.S197782