### Abstract

We begin with a brief outline of special functions and methods, which will be needed in the next chapters. We recall here briefly the Gamma, Beta, Digamma functions, Pochhammer symbol, Bernoulli polynomials and numbers, Bessel, modified Bessel, generalized hypergeometric, Fox–Wright generalized hypergeometric, Hurwitz–Lerch Zeta functions, the Euler–Maclaurin summation formula together with Dirichlet series and Cahen’s formula, Mathieu series, Bessel and Struve differential equations, Fourier-Bessel and Dini series of Bessel functions and fractional differintegral.

Original language | English |
---|---|

Title of host publication | Lecture Notes in Mathematics |

Publisher | Springer Verlag |

Pages | 1-25 |

Number of pages | 25 |

DOIs | |

Publication status | Published - Jan 1 2017 |

### Publication series

Name | Lecture Notes in Mathematics |
---|---|

Volume | 2207 |

ISSN (Print) | 0075-8434 |

### Fingerprint

### ASJC Scopus subject areas

- Algebra and Number Theory

### Cite this

*Lecture Notes in Mathematics*(pp. 1-25). (Lecture Notes in Mathematics; Vol. 2207). Springer Verlag. https://doi.org/10.1007/978-3-319-74350-9_1

**Introduction and preliminaries.** / Baricz, A.; Jankov Maširević, Dragana; Pogány, Tibor K.

Research output: Chapter in Book/Report/Conference proceeding › Chapter

*Lecture Notes in Mathematics.*Lecture Notes in Mathematics, vol. 2207, Springer Verlag, pp. 1-25. https://doi.org/10.1007/978-3-319-74350-9_1

}

TY - CHAP

T1 - Introduction and preliminaries

AU - Baricz, A.

AU - Jankov Maširević, Dragana

AU - Pogány, Tibor K.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We begin with a brief outline of special functions and methods, which will be needed in the next chapters. We recall here briefly the Gamma, Beta, Digamma functions, Pochhammer symbol, Bernoulli polynomials and numbers, Bessel, modified Bessel, generalized hypergeometric, Fox–Wright generalized hypergeometric, Hurwitz–Lerch Zeta functions, the Euler–Maclaurin summation formula together with Dirichlet series and Cahen’s formula, Mathieu series, Bessel and Struve differential equations, Fourier-Bessel and Dini series of Bessel functions and fractional differintegral.

AB - We begin with a brief outline of special functions and methods, which will be needed in the next chapters. We recall here briefly the Gamma, Beta, Digamma functions, Pochhammer symbol, Bernoulli polynomials and numbers, Bessel, modified Bessel, generalized hypergeometric, Fox–Wright generalized hypergeometric, Hurwitz–Lerch Zeta functions, the Euler–Maclaurin summation formula together with Dirichlet series and Cahen’s formula, Mathieu series, Bessel and Struve differential equations, Fourier-Bessel and Dini series of Bessel functions and fractional differintegral.

UR - http://www.scopus.com/inward/record.url?scp=85044675441&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85044675441&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-74350-9_1

DO - 10.1007/978-3-319-74350-9_1

M3 - Chapter

AN - SCOPUS:85044675441

T3 - Lecture Notes in Mathematics

SP - 1

EP - 25

BT - Lecture Notes in Mathematics

PB - Springer Verlag

ER -