Interfacial criterion of spontaneous and forced engulfment of reinforcing particles by an advancing solid/liquid interface

Research output: Contribution to journalArticle

50 Citations (Scopus)


The sign of the interfacial force acting between a ceramic particle and a solidification front through the thin layer of a liquid metal is determined by the sign of the quantity Δσcls. A new, generally valid equation has been developed for this parameter: Δσcls = 2σcs - σcl - σsl (where σcs, σcl and σsl are the interfacial energies in the ceramic/solid metal, in the ceramic/liquid metal, and in the solid metal/ liquid metal systems, respectively). The interfacial force is attractive, i.e., spontaneous engulfment of reinforcing particles by the front is expected, if Δσcls < 0. A new estimation method has also been developed for the quantity σcs. Combining this equation with the new equation for Δσcls, the approximated expressions with easily available parameters for the parameter Δσcls have been obtained for normal metals (Δσcls = σcv - σlv · (0.08 + 1.22 · cos Θclv)) and for Si and Ge (Δσcls = σcv - σlv · (0.57 + 1.66 · cos Θclv), where σcv and σlv are the surface energy of the ceramic and the surface tension of the liquid metal, respectively, while Θclv is the contact angle of the liquid metal on the ceramics). Calculations performed with these equations are in good qualitative agreement with all known pushing/engulfment experiments for metal/ceramic systems. Particularly, it has been theoretically predicted that, while in the majority of normal metal/ceramic and Ge/ceramic systems pushing (and, at higher solidification rates, forced engulfment) is expected, primary Si crystals (crystallizing from hypereutectic Al-Si and other alloys) will spontaneously engulf the majority of ceramic phases. The so-called "pushing/spontaneous engulfment" (PSE) diagrams have been constructed to help make a quick judgement as to whether spontaneous engulfment or pushing is expected in a given metal-ceramic system. For systems with Δσcls > 0, a new equation (similar to that derived earlier by Chernov et al.) has been derived to estimate the critical velocity of the pushing-engulfment transition (PET). Calculations with this equation show excellent quantitative agreement with the critical interface velocity of the PET in the Al/ZrO2 (250 μm) system, measured recently under microgravity conditions by Stefanescu et al.

Original languageEnglish
Pages (from-to)993-1005
Number of pages13
JournalMetallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
Issue number4
Publication statusPublished - Apr 2001

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Mechanics of Materials
  • Metals and Alloys

Fingerprint Dive into the research topics of 'Interfacial criterion of spontaneous and forced engulfment of reinforcing particles by an advancing solid/liquid interface'. Together they form a unique fingerprint.

  • Cite this