Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data

Lazaro Hiram Betancourt, Krzysztof Pawłowski, Jonatan Eriksson, A. Marcell Szasz, Shamik Mitra, Indira Pla, Charlotte Welinder, Henrik Ekedahl, Per Broberg, Roger Appelqvist, Maria Yakovleva, Yutaka Sugihara, Kenichi Miharada, Christian Ingvar, Lotta Lundgren, Bo Baldetorp, Håkan Olsson, Melinda Rezeli, Elisabet Wieslander, Peter HorvatovichJohan Malm, Göran Jönsson, György Marko-Varga

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Metastatic melanoma is one of the most common deadly cancers, and robust biomarkers are still needed, e.g. to predict survival and treatment efficiency. Here, protein expression analysis of one hundred eleven melanoma lymph node metastases using high resolution mass spectrometry is coupled with in-depth histopathology analysis, clinical data and genomics profiles. This broad view of protein expression allowed to identify novel candidate protein markers that improved prediction of survival in melanoma patients. Some of the prognostic proteins have not been reported in the context of melanoma before, and few of them exhibit unexpected relationship to survival, which likely reflects the limitations of current knowledge on melanoma and shows the potential of proteomics in clinical cancer research.

Original languageEnglish
Article number5154
JournalScientific reports
Volume9
Issue number1
DOIs
Publication statusPublished - Dec 1 2019

    Fingerprint

ASJC Scopus subject areas

  • General

Cite this

Betancourt, L. H., Pawłowski, K., Eriksson, J., Szasz, A. M., Mitra, S., Pla, I., Welinder, C., Ekedahl, H., Broberg, P., Appelqvist, R., Yakovleva, M., Sugihara, Y., Miharada, K., Ingvar, C., Lundgren, L., Baldetorp, B., Olsson, H., Rezeli, M., Wieslander, E., ... Marko-Varga, G. (2019). Improved survival prognostication of node-positive malignant melanoma patients utilizing shotgun proteomics guided by histopathological characterization and genomic data. Scientific reports, 9(1), [5154]. https://doi.org/10.1038/s41598-019-41625-z