How many atoms can be defined by boxes?

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We study the function b(n, d), the maximal number of atoms defined by n d-dimensional boxes, i.e. parallelopipeds in the d-dimensional Euclidean space with sides parallel to the coordinate axes. We characterize extremal interval families defining b(n, 1)=2 n-1 atoms and we show that b(n, 2)=2 n 2-6 n+7. We prove that for every d, {Mathematical expression} exists and {Mathematical expression}. Moreover, we obtain b*(3)=8/9.

Original languageEnglish
Pages (from-to)193-204
Number of pages12
JournalCombinatorica
Volume5
Issue number3
DOIs
Publication statusPublished - Sep 1985

Fingerprint

Co-ordinate axis
Atoms
Euclidean space
Interval
Family

Keywords

  • AMS subject classification (1980): 51M05, 52A20

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Mathematics(all)

Cite this

How many atoms can be defined by boxes? / Gyárfás, A.; Lehel, J.; Tuza, Z.

In: Combinatorica, Vol. 5, No. 3, 09.1985, p. 193-204.

Research output: Contribution to journalArticle

Gyárfás, A. ; Lehel, J. ; Tuza, Z. / How many atoms can be defined by boxes?. In: Combinatorica. 1985 ; Vol. 5, No. 3. pp. 193-204.
@article{39e1c6649f9342089b9d424084259186,
title = "How many atoms can be defined by boxes?",
abstract = "We study the function b(n, d), the maximal number of atoms defined by n d-dimensional boxes, i.e. parallelopipeds in the d-dimensional Euclidean space with sides parallel to the coordinate axes. We characterize extremal interval families defining b(n, 1)=2 n-1 atoms and we show that b(n, 2)=2 n 2-6 n+7. We prove that for every d, {Mathematical expression} exists and {Mathematical expression}. Moreover, we obtain b*(3)=8/9.",
keywords = "AMS subject classification (1980): 51M05, 52A20",
author = "A. Gy{\'a}rf{\'a}s and J. Lehel and Z. Tuza",
year = "1985",
month = "9",
doi = "10.1007/BF02579362",
language = "English",
volume = "5",
pages = "193--204",
journal = "Combinatorica",
issn = "0209-9683",
publisher = "Janos Bolyai Mathematical Society",
number = "3",

}

TY - JOUR

T1 - How many atoms can be defined by boxes?

AU - Gyárfás, A.

AU - Lehel, J.

AU - Tuza, Z.

PY - 1985/9

Y1 - 1985/9

N2 - We study the function b(n, d), the maximal number of atoms defined by n d-dimensional boxes, i.e. parallelopipeds in the d-dimensional Euclidean space with sides parallel to the coordinate axes. We characterize extremal interval families defining b(n, 1)=2 n-1 atoms and we show that b(n, 2)=2 n 2-6 n+7. We prove that for every d, {Mathematical expression} exists and {Mathematical expression}. Moreover, we obtain b*(3)=8/9.

AB - We study the function b(n, d), the maximal number of atoms defined by n d-dimensional boxes, i.e. parallelopipeds in the d-dimensional Euclidean space with sides parallel to the coordinate axes. We characterize extremal interval families defining b(n, 1)=2 n-1 atoms and we show that b(n, 2)=2 n 2-6 n+7. We prove that for every d, {Mathematical expression} exists and {Mathematical expression}. Moreover, we obtain b*(3)=8/9.

KW - AMS subject classification (1980): 51M05, 52A20

UR - http://www.scopus.com/inward/record.url?scp=51649156092&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=51649156092&partnerID=8YFLogxK

U2 - 10.1007/BF02579362

DO - 10.1007/BF02579362

M3 - Article

VL - 5

SP - 193

EP - 204

JO - Combinatorica

JF - Combinatorica

SN - 0209-9683

IS - 3

ER -