Hormonal responses to whole-body vibration in men

Carmelo Bosco, M. Iacovelli, O. Tsarpela, M. Cardinale, M. Bonifazi, J. Tihanyi, M. Viru, A. De Lorenzo, A. Viru

Research output: Contribution to journalArticle

349 Citations (Scopus)

Abstract

The aim of this study was to evaluate the acute responses of blood hormone concentrations and neuromuscular performance following whole-body vibration (WBV) treatment. Fourteen male subjects [mean (SD) age 25 (4.6) years] were exposed to vertical sinusoidal WBV, 10 times for 60 s, with 60 s rest between the vibration sets (a rest period lasting 6 min was allowed after 5 vibration sets). Neuromuscular performance tests consisting of counter-movement jumps and maximal dynamic leg presses on a slide machine, performed with an extra load of 160% of the subjects body mass, and with both legs were administered before and immediately after the WBV treatment. The average velocity, acceleration, average force, and power were calculated and the root mean square electromyogram (EMGrms) were recorded from the vastus lateralis and rectus femoris muscles simultaneously during the leg-press measurement. Blood samples were also collected, and plasma concentrations of testosterone (T), growth hormone (GH) and cortisol (C) were measured. The results showed a significant increase in the plasma concentration of T and GH, whereas C levels decreased. An increase in the mechanical power output of the leg extensor muscles was observed together with a reduction in EMGrms activity. Neuromuscular efficiency improved, as indicated by the decrease in the ratio between EMGrms and power. Jumping performance, which was measured using the counter-movement jump test, was also enhanced. Thus, it can be argued that the biological mechanism produced by vibration is similar to the effect produced by explosive power training (jumping and bouncing). The enhancement of explosive power could have been induced by an increase in the synchronisation activity of the motor units, and/or improved co-ordination of the synergistic muscles and increased inhibition of the antagonists. These results suggest that WBV treatment leads to acute responses of hormonal profile and neuromuscular performance. It is therefore likely that the effect of WBV treatment elicited a biological adaptation that is connected to a neural potentiation effect, similar to those reported to occur following resistance and explosive power training. In conclusion, it is suggested that WBV influences proprioceptive feedback mechanisms and specific neural components, leading to an improvement of neuromuscular performance. Moreover, since the hormonal responses, characterised by an increase in T and GH concentration and a decrease in C concentration, and the increase in neuromuscular effectiveness were simultaneous but independent, it is speculated that the two phenomena might have common underlying mechanisms.

Original languageEnglish
Pages (from-to)449-454
Number of pages6
JournalEuropean Journal of Applied Physiology
Volume81
Issue number6
Publication statusPublished - Apr 2000

Fingerprint

Vibration
Leg
Growth Hormone
Quadriceps Muscle
Muscles
Biological Adaptation
Sensory Feedback
Electromyography
Therapeutics
Hydrocortisone
Testosterone
Motor Activity
Power (Psychology)
Hormones
Efficiency

Keywords

  • EMG
  • Growth hormone
  • Jumping performance
  • Testosterone
  • Whole-body vibrations

ASJC Scopus subject areas

  • Public Health, Environmental and Occupational Health
  • Physiology
  • Orthopedics and Sports Medicine
  • Physical Therapy, Sports Therapy and Rehabilitation

Cite this

Bosco, C., Iacovelli, M., Tsarpela, O., Cardinale, M., Bonifazi, M., Tihanyi, J., ... Viru, A. (2000). Hormonal responses to whole-body vibration in men. European Journal of Applied Physiology, 81(6), 449-454.

Hormonal responses to whole-body vibration in men. / Bosco, Carmelo; Iacovelli, M.; Tsarpela, O.; Cardinale, M.; Bonifazi, M.; Tihanyi, J.; Viru, M.; De Lorenzo, A.; Viru, A.

In: European Journal of Applied Physiology, Vol. 81, No. 6, 04.2000, p. 449-454.

Research output: Contribution to journalArticle

Bosco, C, Iacovelli, M, Tsarpela, O, Cardinale, M, Bonifazi, M, Tihanyi, J, Viru, M, De Lorenzo, A & Viru, A 2000, 'Hormonal responses to whole-body vibration in men', European Journal of Applied Physiology, vol. 81, no. 6, pp. 449-454.
Bosco C, Iacovelli M, Tsarpela O, Cardinale M, Bonifazi M, Tihanyi J et al. Hormonal responses to whole-body vibration in men. European Journal of Applied Physiology. 2000 Apr;81(6):449-454.
Bosco, Carmelo ; Iacovelli, M. ; Tsarpela, O. ; Cardinale, M. ; Bonifazi, M. ; Tihanyi, J. ; Viru, M. ; De Lorenzo, A. ; Viru, A. / Hormonal responses to whole-body vibration in men. In: European Journal of Applied Physiology. 2000 ; Vol. 81, No. 6. pp. 449-454.
@article{acd57189eef24fc79cfd4f389e47d722,
title = "Hormonal responses to whole-body vibration in men",
abstract = "The aim of this study was to evaluate the acute responses of blood hormone concentrations and neuromuscular performance following whole-body vibration (WBV) treatment. Fourteen male subjects [mean (SD) age 25 (4.6) years] were exposed to vertical sinusoidal WBV, 10 times for 60 s, with 60 s rest between the vibration sets (a rest period lasting 6 min was allowed after 5 vibration sets). Neuromuscular performance tests consisting of counter-movement jumps and maximal dynamic leg presses on a slide machine, performed with an extra load of 160{\%} of the subjects body mass, and with both legs were administered before and immediately after the WBV treatment. The average velocity, acceleration, average force, and power were calculated and the root mean square electromyogram (EMGrms) were recorded from the vastus lateralis and rectus femoris muscles simultaneously during the leg-press measurement. Blood samples were also collected, and plasma concentrations of testosterone (T), growth hormone (GH) and cortisol (C) were measured. The results showed a significant increase in the plasma concentration of T and GH, whereas C levels decreased. An increase in the mechanical power output of the leg extensor muscles was observed together with a reduction in EMGrms activity. Neuromuscular efficiency improved, as indicated by the decrease in the ratio between EMGrms and power. Jumping performance, which was measured using the counter-movement jump test, was also enhanced. Thus, it can be argued that the biological mechanism produced by vibration is similar to the effect produced by explosive power training (jumping and bouncing). The enhancement of explosive power could have been induced by an increase in the synchronisation activity of the motor units, and/or improved co-ordination of the synergistic muscles and increased inhibition of the antagonists. These results suggest that WBV treatment leads to acute responses of hormonal profile and neuromuscular performance. It is therefore likely that the effect of WBV treatment elicited a biological adaptation that is connected to a neural potentiation effect, similar to those reported to occur following resistance and explosive power training. In conclusion, it is suggested that WBV influences proprioceptive feedback mechanisms and specific neural components, leading to an improvement of neuromuscular performance. Moreover, since the hormonal responses, characterised by an increase in T and GH concentration and a decrease in C concentration, and the increase in neuromuscular effectiveness were simultaneous but independent, it is speculated that the two phenomena might have common underlying mechanisms.",
keywords = "EMG, Growth hormone, Jumping performance, Testosterone, Whole-body vibrations",
author = "Carmelo Bosco and M. Iacovelli and O. Tsarpela and M. Cardinale and M. Bonifazi and J. Tihanyi and M. Viru and {De Lorenzo}, A. and A. Viru",
year = "2000",
month = "4",
language = "English",
volume = "81",
pages = "449--454",
journal = "European Journal of Applied Physiology",
issn = "1439-6319",
publisher = "Springer Verlag",
number = "6",

}

TY - JOUR

T1 - Hormonal responses to whole-body vibration in men

AU - Bosco, Carmelo

AU - Iacovelli, M.

AU - Tsarpela, O.

AU - Cardinale, M.

AU - Bonifazi, M.

AU - Tihanyi, J.

AU - Viru, M.

AU - De Lorenzo, A.

AU - Viru, A.

PY - 2000/4

Y1 - 2000/4

N2 - The aim of this study was to evaluate the acute responses of blood hormone concentrations and neuromuscular performance following whole-body vibration (WBV) treatment. Fourteen male subjects [mean (SD) age 25 (4.6) years] were exposed to vertical sinusoidal WBV, 10 times for 60 s, with 60 s rest between the vibration sets (a rest period lasting 6 min was allowed after 5 vibration sets). Neuromuscular performance tests consisting of counter-movement jumps and maximal dynamic leg presses on a slide machine, performed with an extra load of 160% of the subjects body mass, and with both legs were administered before and immediately after the WBV treatment. The average velocity, acceleration, average force, and power were calculated and the root mean square electromyogram (EMGrms) were recorded from the vastus lateralis and rectus femoris muscles simultaneously during the leg-press measurement. Blood samples were also collected, and plasma concentrations of testosterone (T), growth hormone (GH) and cortisol (C) were measured. The results showed a significant increase in the plasma concentration of T and GH, whereas C levels decreased. An increase in the mechanical power output of the leg extensor muscles was observed together with a reduction in EMGrms activity. Neuromuscular efficiency improved, as indicated by the decrease in the ratio between EMGrms and power. Jumping performance, which was measured using the counter-movement jump test, was also enhanced. Thus, it can be argued that the biological mechanism produced by vibration is similar to the effect produced by explosive power training (jumping and bouncing). The enhancement of explosive power could have been induced by an increase in the synchronisation activity of the motor units, and/or improved co-ordination of the synergistic muscles and increased inhibition of the antagonists. These results suggest that WBV treatment leads to acute responses of hormonal profile and neuromuscular performance. It is therefore likely that the effect of WBV treatment elicited a biological adaptation that is connected to a neural potentiation effect, similar to those reported to occur following resistance and explosive power training. In conclusion, it is suggested that WBV influences proprioceptive feedback mechanisms and specific neural components, leading to an improvement of neuromuscular performance. Moreover, since the hormonal responses, characterised by an increase in T and GH concentration and a decrease in C concentration, and the increase in neuromuscular effectiveness were simultaneous but independent, it is speculated that the two phenomena might have common underlying mechanisms.

AB - The aim of this study was to evaluate the acute responses of blood hormone concentrations and neuromuscular performance following whole-body vibration (WBV) treatment. Fourteen male subjects [mean (SD) age 25 (4.6) years] were exposed to vertical sinusoidal WBV, 10 times for 60 s, with 60 s rest between the vibration sets (a rest period lasting 6 min was allowed after 5 vibration sets). Neuromuscular performance tests consisting of counter-movement jumps and maximal dynamic leg presses on a slide machine, performed with an extra load of 160% of the subjects body mass, and with both legs were administered before and immediately after the WBV treatment. The average velocity, acceleration, average force, and power were calculated and the root mean square electromyogram (EMGrms) were recorded from the vastus lateralis and rectus femoris muscles simultaneously during the leg-press measurement. Blood samples were also collected, and plasma concentrations of testosterone (T), growth hormone (GH) and cortisol (C) were measured. The results showed a significant increase in the plasma concentration of T and GH, whereas C levels decreased. An increase in the mechanical power output of the leg extensor muscles was observed together with a reduction in EMGrms activity. Neuromuscular efficiency improved, as indicated by the decrease in the ratio between EMGrms and power. Jumping performance, which was measured using the counter-movement jump test, was also enhanced. Thus, it can be argued that the biological mechanism produced by vibration is similar to the effect produced by explosive power training (jumping and bouncing). The enhancement of explosive power could have been induced by an increase in the synchronisation activity of the motor units, and/or improved co-ordination of the synergistic muscles and increased inhibition of the antagonists. These results suggest that WBV treatment leads to acute responses of hormonal profile and neuromuscular performance. It is therefore likely that the effect of WBV treatment elicited a biological adaptation that is connected to a neural potentiation effect, similar to those reported to occur following resistance and explosive power training. In conclusion, it is suggested that WBV influences proprioceptive feedback mechanisms and specific neural components, leading to an improvement of neuromuscular performance. Moreover, since the hormonal responses, characterised by an increase in T and GH concentration and a decrease in C concentration, and the increase in neuromuscular effectiveness were simultaneous but independent, it is speculated that the two phenomena might have common underlying mechanisms.

KW - EMG

KW - Growth hormone

KW - Jumping performance

KW - Testosterone

KW - Whole-body vibrations

UR - http://www.scopus.com/inward/record.url?scp=0034027729&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0034027729&partnerID=8YFLogxK

M3 - Article

VL - 81

SP - 449

EP - 454

JO - European Journal of Applied Physiology

JF - European Journal of Applied Physiology

SN - 1439-6319

IS - 6

ER -