Hopf algebroid symmetry of abstract Frobenius extensions of depth 2

G. Böhm, Kornél Szlachányi

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

We study Frobenius 1-cells ℓ in an additive bicategory script l sign satisfying the depth 2 condition. We show that the rings of 2-cells script l sign2 (ℓ × ℓ̄, ℓ × ℓ̄) and script l sign2(ℓ × ℓ, ℓ̄ × ℓ) can be equipped with dual Hopf algebroid structures. We prove also that a Hopf algebroid appears as the solution of the above abstract symmetry problem if and only if it possesses a two sided non-degenerate integral.

Original languageEnglish
Pages (from-to)4433-4464
Number of pages32
JournalCommunications in Algebra
Volume32
Issue number11
DOIs
Publication statusPublished - 2004

Fingerprint

Frobenius
Bicategory
Symmetry
Cell
If and only if
Ring

Keywords

  • Additive bicategory
  • Depth 2
  • Frobenius extension
  • Hopf algebroid
  • Integral element

ASJC Scopus subject areas

  • Algebra and Number Theory

Cite this

Hopf algebroid symmetry of abstract Frobenius extensions of depth 2. / Böhm, G.; Szlachányi, Kornél.

In: Communications in Algebra, Vol. 32, No. 11, 2004, p. 4433-4464.

Research output: Contribution to journalArticle

Böhm, G. ; Szlachányi, Kornél. / Hopf algebroid symmetry of abstract Frobenius extensions of depth 2. In: Communications in Algebra. 2004 ; Vol. 32, No. 11. pp. 4433-4464.
@article{068c316c03ae4f14b1f896f817aeaf5d,
title = "Hopf algebroid symmetry of abstract Frobenius extensions of depth 2",
abstract = "We study Frobenius 1-cells ℓ in an additive bicategory script l sign satisfying the depth 2 condition. We show that the rings of 2-cells script l sign2 (ℓ × ℓ̄, ℓ × ℓ̄) and script l sign2(ℓ × ℓ, ℓ̄ × ℓ) can be equipped with dual Hopf algebroid structures. We prove also that a Hopf algebroid appears as the solution of the above abstract symmetry problem if and only if it possesses a two sided non-degenerate integral.",
keywords = "Additive bicategory, Depth 2, Frobenius extension, Hopf algebroid, Integral element",
author = "G. B{\"o}hm and Korn{\'e}l Szlach{\'a}nyi",
year = "2004",
doi = "10.1081/AGB-200034171",
language = "English",
volume = "32",
pages = "4433--4464",
journal = "Communications in Algebra",
issn = "0092-7872",
publisher = "Taylor and Francis Ltd.",
number = "11",

}

TY - JOUR

T1 - Hopf algebroid symmetry of abstract Frobenius extensions of depth 2

AU - Böhm, G.

AU - Szlachányi, Kornél

PY - 2004

Y1 - 2004

N2 - We study Frobenius 1-cells ℓ in an additive bicategory script l sign satisfying the depth 2 condition. We show that the rings of 2-cells script l sign2 (ℓ × ℓ̄, ℓ × ℓ̄) and script l sign2(ℓ × ℓ, ℓ̄ × ℓ) can be equipped with dual Hopf algebroid structures. We prove also that a Hopf algebroid appears as the solution of the above abstract symmetry problem if and only if it possesses a two sided non-degenerate integral.

AB - We study Frobenius 1-cells ℓ in an additive bicategory script l sign satisfying the depth 2 condition. We show that the rings of 2-cells script l sign2 (ℓ × ℓ̄, ℓ × ℓ̄) and script l sign2(ℓ × ℓ, ℓ̄ × ℓ) can be equipped with dual Hopf algebroid structures. We prove also that a Hopf algebroid appears as the solution of the above abstract symmetry problem if and only if it possesses a two sided non-degenerate integral.

KW - Additive bicategory

KW - Depth 2

KW - Frobenius extension

KW - Hopf algebroid

KW - Integral element

UR - http://www.scopus.com/inward/record.url?scp=22744457010&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=22744457010&partnerID=8YFLogxK

U2 - 10.1081/AGB-200034171

DO - 10.1081/AGB-200034171

M3 - Article

AN - SCOPUS:22744457010

VL - 32

SP - 4433

EP - 4464

JO - Communications in Algebra

JF - Communications in Algebra

SN - 0092-7872

IS - 11

ER -