High-fluence Si-implanted diamond: Optimum implantation temperature for SiC formation

H. Weishart, F. Eichhorn, V. Heera, B. Ṕcz, Á Barna, W. Skorupa

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

In this paper the authors investigate the effect of implantation temperature on the structural properties of diamond implanted with high fluences of Si between 5.3× 1017 Si cm-2 and 1× 1018 Si cm-2. In order to reduce radiation-induced damage and to enhance SiC formation the implantations were performed at elevated temperatures in the range from 900 to 1200°C. Subsequently, all samples were annealed for 10 min at 1500°C in a rf-heated furnace. X-ray diffraction revealed the formation of cubic SiC nanocrystallites in a buried layer inside the implanted diamond. The implantation-induced damage was assessed by analyzing graphitization of the surface-near layer using Raman spectroscopy. With increasing Si fluence the implantation-induced damage rises and the nearly perfect alignment of the formed SiC crystallites within the host diamond lattice deteriorates. However, raising the implantation temperature from 900 to 1000°C reduces the damage in the diamond and increases the amount, size, and epitaxial alignment of the crystalline SiC precipitates. Further increase of the implantation temperature gives no improvement in the quality of the SiC-rich layer. Instead, the damaged diamond converts into graphite and the formation of SiC crystallites is obstructed.

Original languageEnglish
Article number043503
JournalJournal of Applied Physics
Volume98
Issue number4
DOIs
Publication statusPublished - Aug 15 2005

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'High-fluence Si-implanted diamond: Optimum implantation temperature for SiC formation'. Together they form a unique fingerprint.

  • Cite this