Abstract
Rh nanoparticles of 50-100 nm diameter and 20-40 atomic layer thickness with a (111) flat top facet parallel to the support surface were grown on a TiO2(110) surface via physical vapor deposition (PVD) at room temperature (RT) followed by annealing at 1050 K. These nanoparticles were completely encapsulated by an ordered hexagonal pinwheel TiO∼1.2 ultrathin oxide (w-TiO-UTO) film. STM, XPS, and low energy ion scattering (LEIS) methods were used to characterize the postdeposition of gold and the effects of annealing on the Au/w-TiO-UTO/Rh-particle system. The adlayer exhibits 3D growth and Rh-Au bond formation at 500 K. The 3D Au nanoparticles of 2-3 nm diameter and ∼1 nm height are partially covered by TiOx species at RT and sinter via an Ostwald-ripening in the range of 500-800 K. The adparticles are gradually getting free of TiOx decoration, and at around 900 K they exhibit a double layer height with 2D character. Two different arrangements were found for these Au particles: (i) a compressed Au(111)-(1 × 1) and (ii) a reconstructed Au(111)-(2 × 1), both of them pseudomorphic with the Rh lattice underneath. Above 900 K, the thickness of these 2D particles tends to become a single layer, while they spread out and form a continuous gold layer on the Rh nanoparticles. This behavior indicates a thermally activated replacement of the w-TiO-UTO film by an Au ultrathin layer. The gold layer is stable up to 1000 K, where extended 1D interfaces are formed between gold and w-TiO-UTO layers. (Figure Presented)
Original language | English |
---|---|
Pages (from-to) | 14545-14554 |
Number of pages | 10 |
Journal | Langmuir |
Volume | 30 |
Issue number | 48 |
DOIs | |
Publication status | Published - Dec 9 2014 |
Fingerprint
ASJC Scopus subject areas
- Electrochemistry
- Condensed Matter Physics
- Surfaces and Interfaces
- Materials Science(all)
- Spectroscopy
Cite this
Growth of gold on a pinwheel TiO∼1.2 encapsulation film prepared on rhodium nanocrystallites. / Gubó, R.; Óvári, L.; Kónya, Z.; Berkó, A.
In: Langmuir, Vol. 30, No. 48, 09.12.2014, p. 14545-14554.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Growth of gold on a pinwheel TiO∼1.2 encapsulation film prepared on rhodium nanocrystallites
AU - Gubó, R.
AU - Óvári, L.
AU - Kónya, Z.
AU - Berkó, A.
PY - 2014/12/9
Y1 - 2014/12/9
N2 - Rh nanoparticles of 50-100 nm diameter and 20-40 atomic layer thickness with a (111) flat top facet parallel to the support surface were grown on a TiO2(110) surface via physical vapor deposition (PVD) at room temperature (RT) followed by annealing at 1050 K. These nanoparticles were completely encapsulated by an ordered hexagonal pinwheel TiO∼1.2 ultrathin oxide (w-TiO-UTO) film. STM, XPS, and low energy ion scattering (LEIS) methods were used to characterize the postdeposition of gold and the effects of annealing on the Au/w-TiO-UTO/Rh-particle system. The adlayer exhibits 3D growth and Rh-Au bond formation at 500 K. The 3D Au nanoparticles of 2-3 nm diameter and ∼1 nm height are partially covered by TiOx species at RT and sinter via an Ostwald-ripening in the range of 500-800 K. The adparticles are gradually getting free of TiOx decoration, and at around 900 K they exhibit a double layer height with 2D character. Two different arrangements were found for these Au particles: (i) a compressed Au(111)-(1 × 1) and (ii) a reconstructed Au(111)-(2 × 1), both of them pseudomorphic with the Rh lattice underneath. Above 900 K, the thickness of these 2D particles tends to become a single layer, while they spread out and form a continuous gold layer on the Rh nanoparticles. This behavior indicates a thermally activated replacement of the w-TiO-UTO film by an Au ultrathin layer. The gold layer is stable up to 1000 K, where extended 1D interfaces are formed between gold and w-TiO-UTO layers. (Figure Presented)
AB - Rh nanoparticles of 50-100 nm diameter and 20-40 atomic layer thickness with a (111) flat top facet parallel to the support surface were grown on a TiO2(110) surface via physical vapor deposition (PVD) at room temperature (RT) followed by annealing at 1050 K. These nanoparticles were completely encapsulated by an ordered hexagonal pinwheel TiO∼1.2 ultrathin oxide (w-TiO-UTO) film. STM, XPS, and low energy ion scattering (LEIS) methods were used to characterize the postdeposition of gold and the effects of annealing on the Au/w-TiO-UTO/Rh-particle system. The adlayer exhibits 3D growth and Rh-Au bond formation at 500 K. The 3D Au nanoparticles of 2-3 nm diameter and ∼1 nm height are partially covered by TiOx species at RT and sinter via an Ostwald-ripening in the range of 500-800 K. The adparticles are gradually getting free of TiOx decoration, and at around 900 K they exhibit a double layer height with 2D character. Two different arrangements were found for these Au particles: (i) a compressed Au(111)-(1 × 1) and (ii) a reconstructed Au(111)-(2 × 1), both of them pseudomorphic with the Rh lattice underneath. Above 900 K, the thickness of these 2D particles tends to become a single layer, while they spread out and form a continuous gold layer on the Rh nanoparticles. This behavior indicates a thermally activated replacement of the w-TiO-UTO film by an Au ultrathin layer. The gold layer is stable up to 1000 K, where extended 1D interfaces are formed between gold and w-TiO-UTO layers. (Figure Presented)
UR - http://www.scopus.com/inward/record.url?scp=84916197235&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84916197235&partnerID=8YFLogxK
U2 - 10.1021/la503756c
DO - 10.1021/la503756c
M3 - Article
AN - SCOPUS:84916197235
VL - 30
SP - 14545
EP - 14554
JO - Langmuir
JF - Langmuir
SN - 0743-7463
IS - 48
ER -