Griffiths phases and localization in hierarchical modular networks

Géza Ódor, Ronald Dickman, Gergely Ódor

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [ Front. in Neuroinform., 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be embedded in two-dimensional Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models on networks of this kind, including hierarchical trees. While in the small-world networks originally proposed to model brain connectivity, the topological heterogeneities are not strong enough to induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under reduced connection probabilities, approaching the percolation threshold. In this case the topological dimension of the networks is finite, and extended regions of bursty, power-law dynamics are observed. Localization in the steady state is also shown via QMF. We investigate the effects of link asymmetry and coupling disorder, and show that localization can occur even in small-world networks with high connectivity in case of link disorder.

Original languageEnglish
Article number14451
JournalScientific reports
Volume5
DOIs
Publication statusPublished - Sep 24 2015

    Fingerprint

ASJC Scopus subject areas

  • General

Cite this