Inégalités d'interpolation géodésique sur les groupes de Heisenberg

Translated title of the contribution: Geodesic interpolation inequalities on Heisenberg groups

Zoltán M. Balogh, A. Kristály, Kinga Sipos

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski and entropy inequalities on the Heisenberg group Hn. Our arguments use the Riemannian approximation of Hn combined with optimal mass-transportation techniques.

Original languageFrench
Pages (from-to)916-919
Number of pages4
JournalComptes Rendus Mathematique
Volume354
Issue number9
DOIs
Publication statusPublished - Sep 1 2016

Fingerprint

Interpolation Inequality
Entropy Inequality
Heisenberg Group
Geodesic
Approximation

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

Inégalités d'interpolation géodésique sur les groupes de Heisenberg. / Balogh, Zoltán M.; Kristály, A.; Sipos, Kinga.

In: Comptes Rendus Mathematique, Vol. 354, No. 9, 01.09.2016, p. 916-919.

Research output: Contribution to journalArticle

Balogh, Zoltán M. ; Kristály, A. ; Sipos, Kinga. / Inégalités d'interpolation géodésique sur les groupes de Heisenberg. In: Comptes Rendus Mathematique. 2016 ; Vol. 354, No. 9. pp. 916-919.
@article{8785ed6e041f44ebb09fd941f2127827,
title = "In{\'e}galit{\'e}s d'interpolation g{\'e}od{\'e}sique sur les groupes de Heisenberg",
abstract = "In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski and entropy inequalities on the Heisenberg group Hn. Our arguments use the Riemannian approximation of Hn combined with optimal mass-transportation techniques.",
author = "Balogh, {Zolt{\'a}n M.} and A. Krist{\'a}ly and Kinga Sipos",
year = "2016",
month = "9",
day = "1",
doi = "10.1016/j.crma.2016.07.001",
language = "French",
volume = "354",
pages = "916--919",
journal = "Comptes Rendus Mathematique",
issn = "1631-073X",
publisher = "Elsevier Masson",
number = "9",

}

TY - JOUR

T1 - Inégalités d'interpolation géodésique sur les groupes de Heisenberg

AU - Balogh, Zoltán M.

AU - Kristály, A.

AU - Sipos, Kinga

PY - 2016/9/1

Y1 - 2016/9/1

N2 - In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski and entropy inequalities on the Heisenberg group Hn. Our arguments use the Riemannian approximation of Hn combined with optimal mass-transportation techniques.

AB - In this Note, we present geodesic versions of the Borell–Brascamp–Lieb, Brunn–Minkowski and entropy inequalities on the Heisenberg group Hn. Our arguments use the Riemannian approximation of Hn combined with optimal mass-transportation techniques.

UR - http://www.scopus.com/inward/record.url?scp=84990050438&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84990050438&partnerID=8YFLogxK

U2 - 10.1016/j.crma.2016.07.001

DO - 10.1016/j.crma.2016.07.001

M3 - Article

AN - SCOPUS:84990050438

VL - 354

SP - 916

EP - 919

JO - Comptes Rendus Mathematique

JF - Comptes Rendus Mathematique

SN - 1631-073X

IS - 9

ER -