Generalized radix representations and dynamical systems III

Shigeki Akiyama, Horst Brunotte, Attila Petho, Jörg M. Thuswaldner

Research output: Contribution to journalArticle

12 Citations (Scopus)


For r = (r1...., rd) ∈ ℝd the map tau;r: ℤd → ℤd given by τr(a1,..., ad) = (a2,..., a d, - ⌊r1a1 + ⋯ + r dad⌋) is called a shift radix system if for each a ∈ ℤd there exists an integer k > 0 with τrk(a) = 0. As shown in the first two parts of this series of papers shift radix systems are intimately related to certain well-known notions of number systems like β-expansions and canonical number systems. In the present paper further structural relationships between shift radix systems and canonical number systems are investigated. Among other results we show that canonical number systems related to polynomials ∑i=0d piXi ∈ ℤ[X] of degree d with a large but fixed constant term p0 approximate the set of (d - 1)-dimensional shift radix systems. The proofs make extensive use of the following tools: Firstly, vectors r ∈ ℝd which define shift radix systems are strongly connected to monic real polynomials all of whose roots lie inside the unit circle. Secondly, geometric considerations which were established in Part I of this series of papers are exploited. The main results establish two conjectures mentioned in Part II of this series of papers.

Original languageEnglish
Pages (from-to)347-374
Number of pages28
JournalOsaka Journal of Mathematics
Issue number2
Publication statusPublished - Jun 1 2008

ASJC Scopus subject areas

  • Mathematics(all)

Fingerprint Dive into the research topics of 'Generalized radix representations and dynamical systems III'. Together they form a unique fingerprint.

  • Cite this

    Akiyama, S., Brunotte, H., Petho, A., & Thuswaldner, J. M. (2008). Generalized radix representations and dynamical systems III. Osaka Journal of Mathematics, 45(2), 347-374.