Generalized projections for non-negative functions

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

The problem of minimizing a functional over a convex set of non-negative functions is considered, when the functional to be minimized is an f-entropy, or f-divergence resp. Bregman distance from a given function.

Original languageEnglish
Title of host publicationIEEE International Symposium on Information Theory - Proceedings
PublisherIEEE
Pages6
Number of pages1
Publication statusPublished - 1995
EventProceedings of the 1995 IEEE International Symposium on Information Theory - Whistler, BC, Can
Duration: Sep 17 1995Sep 22 1995

Other

OtherProceedings of the 1995 IEEE International Symposium on Information Theory
CityWhistler, BC, Can
Period9/17/959/22/95

Fingerprint

Generalized Projection
Non-negative
F-divergence
Bregman Distance
Convex Sets
Entropy

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Applied Mathematics
  • Modelling and Simulation
  • Theoretical Computer Science
  • Information Systems

Cite this

Csiszár, I. (1995). Generalized projections for non-negative functions. In IEEE International Symposium on Information Theory - Proceedings (pp. 6). IEEE.

Generalized projections for non-negative functions. / Csiszár, I.

IEEE International Symposium on Information Theory - Proceedings. IEEE, 1995. p. 6.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Csiszár, I 1995, Generalized projections for non-negative functions. in IEEE International Symposium on Information Theory - Proceedings. IEEE, pp. 6, Proceedings of the 1995 IEEE International Symposium on Information Theory, Whistler, BC, Can, 9/17/95.
Csiszár I. Generalized projections for non-negative functions. In IEEE International Symposium on Information Theory - Proceedings. IEEE. 1995. p. 6
Csiszár, I. / Generalized projections for non-negative functions. IEEE International Symposium on Information Theory - Proceedings. IEEE, 1995. pp. 6
@inproceedings{58a27f095172460aab395634e7f48475,
title = "Generalized projections for non-negative functions",
abstract = "The problem of minimizing a functional over a convex set of non-negative functions is considered, when the functional to be minimized is an f-entropy, or f-divergence resp. Bregman distance from a given function.",
author = "I. Csisz{\'a}r",
year = "1995",
language = "English",
pages = "6",
booktitle = "IEEE International Symposium on Information Theory - Proceedings",
publisher = "IEEE",

}

TY - GEN

T1 - Generalized projections for non-negative functions

AU - Csiszár, I.

PY - 1995

Y1 - 1995

N2 - The problem of minimizing a functional over a convex set of non-negative functions is considered, when the functional to be minimized is an f-entropy, or f-divergence resp. Bregman distance from a given function.

AB - The problem of minimizing a functional over a convex set of non-negative functions is considered, when the functional to be minimized is an f-entropy, or f-divergence resp. Bregman distance from a given function.

UR - http://www.scopus.com/inward/record.url?scp=0029205004&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029205004&partnerID=8YFLogxK

M3 - Conference contribution

AN - SCOPUS:0029205004

SP - 6

BT - IEEE International Symposium on Information Theory - Proceedings

PB - IEEE

ER -