Functional and molecular characterization of ex vivo cultured epiretinal membrane cells from human proliferative diabetic retinopathy

Zoltán Veréb, Xhevat Lumi, Sofija Andjelic, Mojca Globocnik-Petrovic, Mojca Urbancic, Marko Hawlina, Andrea Facskó, Goran Petrovski

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Characterization of the cell surface marker phenotype of ex vivo cultured cells growing out of human fibrovascular epiretinal membranes (fvERMs) from proliferative diabetic retinopathy (PDR) can give insight into their function in immunity, angiogenesis, and retinal detachment. FvERMs from uneventful vitrectomies due to PDR were cultured adherently ex vivo. Surface marker analysis, release of immunity- and angiogenesis-pathway-related factors upon TNFα activation and measurement of the intracellular calcium dynamics upon mechano-stimulation using fluorescent dye Fura-2 were all performed. FvERMs formed proliferating cell monolayers when cultured ex vivo, which were negative for endothelial cell markers (CD31, VEGFR2), partially positive for hematopoietic- (CD34, CD47) and mesenchymal stem cell markers (CD73, CD90/Thy-1, and PDGFRβ), and negative for CD105. CD146/MCAM and CD166/ALCAM, previously unreported in cells from fvERMs, were also expressed. Secretion of 11 angiogenesis-related factors (DPPIV/CD26, EG-VEGF/PK1, ET-1, IGFBP-2 and 3, IL-8/CXCL8, MCP-1/CCL2, MMP-9, PTX3/TSG-14, Serpin E1/PAI-1, Serpin F1/PEDF, TIMP-1, and TSP-1) were detected upon TNFα activation of fvERM cells. Mechano-stimulation of these cells induced intracellular calcium propagation representing functional viability and role of these cells in tractional retinal detachment, thus serving as a model for studying tractional forces present in fvERMs in PDR ex vivo.

Original languageEnglish
Article number492376
JournalBioMed research international
Volume2013
DOIs
Publication statusPublished - 2013

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Immunology and Microbiology(all)

Fingerprint Dive into the research topics of 'Functional and molecular characterization of ex vivo cultured epiretinal membrane cells from human proliferative diabetic retinopathy'. Together they form a unique fingerprint.

  • Cite this