Free shuffle algebras in language varieties

Stephen L. Bloom, Z. Ésik

Research output: Contribution to journalArticle

46 Citations (Scopus)

Abstract

We give simple concrete descriptions of the free algebras in the varieties generated by the "shuffle semirings" LΣ := (P(Σ*),+, ·, ⊗, 0, 1), or the semirings RΣ := (R(Σ*), +, ·, ⊗, *, 0, 1), where P(Σ*) is the collection of all subsets of the free monoid Σ*, and R(Σ*) is the collection of all regular subsets. The operation x ⊗ y is the shuffle product.

Original languageEnglish
Pages (from-to)55-98
Number of pages44
JournalTheoretical Computer Science
Volume163
Issue number1-2
Publication statusPublished - Aug 30 1996

Fingerprint

Shuffle
Semiring
Algebra
Free Monoid
Subset
Free Algebras
Language

ASJC Scopus subject areas

  • Computational Theory and Mathematics

Cite this

Free shuffle algebras in language varieties. / Bloom, Stephen L.; Ésik, Z.

In: Theoretical Computer Science, Vol. 163, No. 1-2, 30.08.1996, p. 55-98.

Research output: Contribution to journalArticle

Bloom, Stephen L. ; Ésik, Z. / Free shuffle algebras in language varieties. In: Theoretical Computer Science. 1996 ; Vol. 163, No. 1-2. pp. 55-98.
@article{832b386a959d4ecd987538e9003f0426,
title = "Free shuffle algebras in language varieties",
abstract = "We give simple concrete descriptions of the free algebras in the varieties generated by the {"}shuffle semirings{"} LΣ := (P(Σ*),+, ·, ⊗, 0, 1), or the semirings RΣ := (R(Σ*), +, ·, ⊗, *, 0, 1), where P(Σ*) is the collection of all subsets of the free monoid Σ*, and R(Σ*) is the collection of all regular subsets. The operation x ⊗ y is the shuffle product.",
author = "Bloom, {Stephen L.} and Z. {\'E}sik",
year = "1996",
month = "8",
day = "30",
language = "English",
volume = "163",
pages = "55--98",
journal = "Theoretical Computer Science",
issn = "0304-3975",
publisher = "Elsevier",
number = "1-2",

}

TY - JOUR

T1 - Free shuffle algebras in language varieties

AU - Bloom, Stephen L.

AU - Ésik, Z.

PY - 1996/8/30

Y1 - 1996/8/30

N2 - We give simple concrete descriptions of the free algebras in the varieties generated by the "shuffle semirings" LΣ := (P(Σ*),+, ·, ⊗, 0, 1), or the semirings RΣ := (R(Σ*), +, ·, ⊗, *, 0, 1), where P(Σ*) is the collection of all subsets of the free monoid Σ*, and R(Σ*) is the collection of all regular subsets. The operation x ⊗ y is the shuffle product.

AB - We give simple concrete descriptions of the free algebras in the varieties generated by the "shuffle semirings" LΣ := (P(Σ*),+, ·, ⊗, 0, 1), or the semirings RΣ := (R(Σ*), +, ·, ⊗, *, 0, 1), where P(Σ*) is the collection of all subsets of the free monoid Σ*, and R(Σ*) is the collection of all regular subsets. The operation x ⊗ y is the shuffle product.

UR - http://www.scopus.com/inward/record.url?scp=0030214497&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030214497&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0030214497

VL - 163

SP - 55

EP - 98

JO - Theoretical Computer Science

JF - Theoretical Computer Science

SN - 0304-3975

IS - 1-2

ER -