FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series

Jan Buchholz, Jan Wolfgang Krieger, Gábor Mocsár, Balázs Kreith, Edoardo Charbon, György Vámosi, Udo Kebschull, Jörg Langowski

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

With the evolving technology in CMOS integration, new classes of 2D-imaging detectors have recently become available. In particular, single photon avalanche diode (SPAD) arrays allow detection of single photons at high acquisition rates (≥ 100kfps), which is about two orders of magnitude higher than with currently available cameras. Here we demonstrate the use of a SPAD array for imaging fluorescence correlation spectroscopy (imFCS), a tool to create 2D maps of the dynamics of fluorescent molecules inside living cells. Time-dependent fluorescence fluctuations, due to fluorophores entering and leaving the observed pixels, are evaluated by means of autocorrelation analysis. The multi-τ correlation algorithm is an appropriate choice, as it does not rely on the full data set to be held in memory. Thus, this algorithm can be efficiently implemented in custom logic. We describe a new implementation for massively parallel multi-τ correlation hardware. Our current implementation can calculate 1024 correlation functions at a resolution of 10 μs in real-time and therefore correlate real-time image streams from high speed single photon cameras with thousands of pixels.

Original languageEnglish
Pages (from-to)17767-17782
Number of pages16
JournalOptics Express
Volume20
Issue number16
DOIs
Publication statusPublished - Jul 30 2012

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series'. Together they form a unique fingerprint.

  • Cite this

    Buchholz, J., Krieger, J. W., Mocsár, G., Kreith, B., Charbon, E., Vámosi, G., Kebschull, U., & Langowski, J. (2012). FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series. Optics Express, 20(16), 17767-17782. https://doi.org/10.1364/OE.20.017767