Follow-up of the fate of imazalil from post-harvest lemon surface treatment to a baking experiment

Andrea Vass, Evelin Korpics, M. Dernovics

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

Imazalil is one of the most widespread fungicides used for the post-harvest treatment of citrus species. The separate use of peel during food preparation and processing may hitherto concentrate most of the imazalil into food products, where specific maximum residue limits hardly exist for this fungicide. In order to monitor comprehensively the path of imazalil, our study covered the monitoring of the efficiency of several washing treatments, the comparison of operative and related sample preparation methods for the lemon samples, the validation of a sample preparation technique for a fatty cake matrix, the preparation of a model cake sample made separately either with imazalil containing lemon peel or with imazalil spiking, the monitoring of imazalil degradation into α-(2,4-dichlorophenyl)-1H-imidazole-1-ethanol because of the baking process, and finally the mass balance of imazalil throughout the washing experiments and the baking process. Quantification of imazalil was carried out with an LC-ESI-MS/MS set-up, while LC-QTOF was used for the monitoring of imazalil degradation. Concerning the washing, none of the addressed five washing protocols could remove more than 30% of imazalil from the surface of the lemon samples. The study revealed a significant difference between the extraction efficiency of imazalil by the EN 15662:2008 and AOAC 2007.1 methods, with the advantage of the former. The use of the model cake sample helped to validate a modified version of the EN 15662:2008 method that included a freeze-out step to efficiently recover imazalil (>90%) from the fatty cake matrix. The degradation of imazalil during the baking process was significantly higher when this analyte was spiked into the cake matrix than in the case of preparing the cake with imazalil-containing lemon peel (52% vs. 22%). This observation calls the attention to the careful evaluation of pesticide stability data that are based on solution spiking experiments.

Original languageEnglish
Pages (from-to)1875-1884
Number of pages10
JournalFood Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment
Volume32
Issue number11
DOIs
Publication statusPublished - Nov 2 2015

Fingerprint

imazalil
lemons
baking
Surface treatment
Experiments
Washing
washing
Fungicides
monitoring
enilconazole
sampling
Degradation
degradation
Monitoring
fungicides
Food Handling
imidazoles
maximum residue limits
postharvest treatment
food preparation

Keywords

  • imazalil
  • mass balance
  • recovery
  • washing treatment

ASJC Scopus subject areas

  • Food Science
  • Health, Toxicology and Mutagenesis
  • Public Health, Environmental and Occupational Health
  • Toxicology
  • Chemistry(all)

Cite this

@article{d5a5b2f22a8941b58a94aac5b4e0d7ea,
title = "Follow-up of the fate of imazalil from post-harvest lemon surface treatment to a baking experiment",
abstract = "Imazalil is one of the most widespread fungicides used for the post-harvest treatment of citrus species. The separate use of peel during food preparation and processing may hitherto concentrate most of the imazalil into food products, where specific maximum residue limits hardly exist for this fungicide. In order to monitor comprehensively the path of imazalil, our study covered the monitoring of the efficiency of several washing treatments, the comparison of operative and related sample preparation methods for the lemon samples, the validation of a sample preparation technique for a fatty cake matrix, the preparation of a model cake sample made separately either with imazalil containing lemon peel or with imazalil spiking, the monitoring of imazalil degradation into α-(2,4-dichlorophenyl)-1H-imidazole-1-ethanol because of the baking process, and finally the mass balance of imazalil throughout the washing experiments and the baking process. Quantification of imazalil was carried out with an LC-ESI-MS/MS set-up, while LC-QTOF was used for the monitoring of imazalil degradation. Concerning the washing, none of the addressed five washing protocols could remove more than 30{\%} of imazalil from the surface of the lemon samples. The study revealed a significant difference between the extraction efficiency of imazalil by the EN 15662:2008 and AOAC 2007.1 methods, with the advantage of the former. The use of the model cake sample helped to validate a modified version of the EN 15662:2008 method that included a freeze-out step to efficiently recover imazalil (>90{\%}) from the fatty cake matrix. The degradation of imazalil during the baking process was significantly higher when this analyte was spiked into the cake matrix than in the case of preparing the cake with imazalil-containing lemon peel (52{\%} vs. 22{\%}). This observation calls the attention to the careful evaluation of pesticide stability data that are based on solution spiking experiments.",
keywords = "imazalil, mass balance, recovery, washing treatment",
author = "Andrea Vass and Evelin Korpics and M. Dernovics",
year = "2015",
month = "11",
day = "2",
doi = "10.1080/19440049.2015.1086824",
language = "English",
volume = "32",
pages = "1875--1884",
journal = "Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment",
issn = "1944-0049",
publisher = "Taylor and Francis Ltd.",
number = "11",

}

TY - JOUR

T1 - Follow-up of the fate of imazalil from post-harvest lemon surface treatment to a baking experiment

AU - Vass, Andrea

AU - Korpics, Evelin

AU - Dernovics, M.

PY - 2015/11/2

Y1 - 2015/11/2

N2 - Imazalil is one of the most widespread fungicides used for the post-harvest treatment of citrus species. The separate use of peel during food preparation and processing may hitherto concentrate most of the imazalil into food products, where specific maximum residue limits hardly exist for this fungicide. In order to monitor comprehensively the path of imazalil, our study covered the monitoring of the efficiency of several washing treatments, the comparison of operative and related sample preparation methods for the lemon samples, the validation of a sample preparation technique for a fatty cake matrix, the preparation of a model cake sample made separately either with imazalil containing lemon peel or with imazalil spiking, the monitoring of imazalil degradation into α-(2,4-dichlorophenyl)-1H-imidazole-1-ethanol because of the baking process, and finally the mass balance of imazalil throughout the washing experiments and the baking process. Quantification of imazalil was carried out with an LC-ESI-MS/MS set-up, while LC-QTOF was used for the monitoring of imazalil degradation. Concerning the washing, none of the addressed five washing protocols could remove more than 30% of imazalil from the surface of the lemon samples. The study revealed a significant difference between the extraction efficiency of imazalil by the EN 15662:2008 and AOAC 2007.1 methods, with the advantage of the former. The use of the model cake sample helped to validate a modified version of the EN 15662:2008 method that included a freeze-out step to efficiently recover imazalil (>90%) from the fatty cake matrix. The degradation of imazalil during the baking process was significantly higher when this analyte was spiked into the cake matrix than in the case of preparing the cake with imazalil-containing lemon peel (52% vs. 22%). This observation calls the attention to the careful evaluation of pesticide stability data that are based on solution spiking experiments.

AB - Imazalil is one of the most widespread fungicides used for the post-harvest treatment of citrus species. The separate use of peel during food preparation and processing may hitherto concentrate most of the imazalil into food products, where specific maximum residue limits hardly exist for this fungicide. In order to monitor comprehensively the path of imazalil, our study covered the monitoring of the efficiency of several washing treatments, the comparison of operative and related sample preparation methods for the lemon samples, the validation of a sample preparation technique for a fatty cake matrix, the preparation of a model cake sample made separately either with imazalil containing lemon peel or with imazalil spiking, the monitoring of imazalil degradation into α-(2,4-dichlorophenyl)-1H-imidazole-1-ethanol because of the baking process, and finally the mass balance of imazalil throughout the washing experiments and the baking process. Quantification of imazalil was carried out with an LC-ESI-MS/MS set-up, while LC-QTOF was used for the monitoring of imazalil degradation. Concerning the washing, none of the addressed five washing protocols could remove more than 30% of imazalil from the surface of the lemon samples. The study revealed a significant difference between the extraction efficiency of imazalil by the EN 15662:2008 and AOAC 2007.1 methods, with the advantage of the former. The use of the model cake sample helped to validate a modified version of the EN 15662:2008 method that included a freeze-out step to efficiently recover imazalil (>90%) from the fatty cake matrix. The degradation of imazalil during the baking process was significantly higher when this analyte was spiked into the cake matrix than in the case of preparing the cake with imazalil-containing lemon peel (52% vs. 22%). This observation calls the attention to the careful evaluation of pesticide stability data that are based on solution spiking experiments.

KW - imazalil

KW - mass balance

KW - recovery

KW - washing treatment

UR - http://www.scopus.com/inward/record.url?scp=84945468707&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84945468707&partnerID=8YFLogxK

U2 - 10.1080/19440049.2015.1086824

DO - 10.1080/19440049.2015.1086824

M3 - Article

C2 - 26365625

AN - SCOPUS:84945468707

VL - 32

SP - 1875

EP - 1884

JO - Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment

JF - Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment

SN - 1944-0049

IS - 11

ER -