### Abstract

Let ℱ be a family of k-subsets on an n-set X and c be a real number 0 n (k, c)) then[Figure not available: see fulltext.] The corresponding lower bound is given by the following construction. Let Y be a (q^{ t} + ... +q + 1)-subset of X and H_{ 1}, H_{ 2}, ..., H_{ |Y|} the hyperplanes of the t-dimensional projective space of order q on Y. Let ℱ consist of those k-subsets which intersect Y in a hyperplane, i.e., ℱ={F∈(_{ k}^{ X} ): there exists an i, 1≦i≦|Y|, such that Y∩F=H_{ i} }.

Original language | English |
---|---|

Pages (from-to) | 335-354 |

Number of pages | 20 |

Journal | Combinatorica |

Volume | 6 |

Issue number | 4 |

DOIs | |

Publication status | Published - Dec 1986 |

### Fingerprint

### Keywords

- AMS subject classification (1980): 05B25, 05C35

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Mathematics(all)

### Cite this

*Combinatorica*,

*6*(4), 335-354. https://doi.org/10.1007/BF02579260

**Finite projective spaces and intersecting hypergraphs.** / Frankl, P.; Füredi, Z.

Research output: Contribution to journal › Article

*Combinatorica*, vol. 6, no. 4, pp. 335-354. https://doi.org/10.1007/BF02579260

}

TY - JOUR

T1 - Finite projective spaces and intersecting hypergraphs

AU - Frankl, P.

AU - Füredi, Z.

PY - 1986/12

Y1 - 1986/12

N2 - Let ℱ be a family of k-subsets on an n-set X and c be a real number 0 n (k, c)) then[Figure not available: see fulltext.] The corresponding lower bound is given by the following construction. Let Y be a (q t + ... +q + 1)-subset of X and H 1, H 2, ..., H |Y| the hyperplanes of the t-dimensional projective space of order q on Y. Let ℱ consist of those k-subsets which intersect Y in a hyperplane, i.e., ℱ={F∈( k X ): there exists an i, 1≦i≦|Y|, such that Y∩F=H i }.

AB - Let ℱ be a family of k-subsets on an n-set X and c be a real number 0 n (k, c)) then[Figure not available: see fulltext.] The corresponding lower bound is given by the following construction. Let Y be a (q t + ... +q + 1)-subset of X and H 1, H 2, ..., H |Y| the hyperplanes of the t-dimensional projective space of order q on Y. Let ℱ consist of those k-subsets which intersect Y in a hyperplane, i.e., ℱ={F∈( k X ): there exists an i, 1≦i≦|Y|, such that Y∩F=H i }.

KW - AMS subject classification (1980): 05B25, 05C35

UR - http://www.scopus.com/inward/record.url?scp=51249176879&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=51249176879&partnerID=8YFLogxK

U2 - 10.1007/BF02579260

DO - 10.1007/BF02579260

M3 - Article

AN - SCOPUS:51249176879

VL - 6

SP - 335

EP - 354

JO - Combinatorica

JF - Combinatorica

SN - 0209-9683

IS - 4

ER -