Finding a monochromatic subgraph or a rainbow path

András Gyárfás, Jeno Lehel, Richard H. Schelp

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

For simple graphs G and H, let f(G, H) denote the least integer N such that every coloring of the edges of KN contains either a monochromatic copy of G or a rainbow copy of H. Here we investigate f(G, H) when H = P k- We show that even if the number of colors is unrestricted when defining f(G, H), the function f(G, Pk), for k = 4 and 5, equals the (k -2)- coloring diagonal Ramsey number of G.

Original languageEnglish
Pages (from-to)1-12
Number of pages12
JournalJournal of Graph Theory
Volume54
Issue number1
DOIs
Publication statusPublished - Jan 1 2007

    Fingerprint

Keywords

  • Anti-Ramsey problems
  • Local 2-coloring
  • Multicolored path
  • Ramsey theory

ASJC Scopus subject areas

  • Geometry and Topology

Cite this