Extension de quelques theoremes sur les densites de series d'elements de n a des series de sous-ensembles finis de n

M. Deza, P. Erdős

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm≤nA(m) 2n, d(A) = lim infn→∞ A(n) 2n, where A(m) is the number of subsets Ak ⊆ {1, 2, ..., m}. The collection of all subsets of {1, ..., n} together with the operation a ∪ b, (a ∩ b), (a * b = a ∪ b {minus 45 degree rule} a ∩ b) constitutes a finite semi-group N (semi-group N) (group N*). For N, N we prove analogues of the Erdös-Landau theorem: δ(A+B) ≥ δ(A)(1+(2λ)-1(1-δ(A>))), where B is a base of N of the average order λ. We prove for N, N, N* analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ≤ 2h, where h is the order of the base. We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr

Original languageEnglish
Pages (from-to)295-308
Number of pages14
JournalDiscrete Mathematics
Volume12
Issue number4
DOIs
Publication statusPublished - 1975

Fingerprint

Ensemble
Subset
Series
Analogue
Semigroup
Theorem
Divisibility
Continuation
Imply

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Extension de quelques theoremes sur les densites de series d'elements de n a des series de sous-ensembles finis de n. / Deza, M.; Erdős, P.

In: Discrete Mathematics, Vol. 12, No. 4, 1975, p. 295-308.

Research output: Contribution to journalArticle

@article{ea55199f9f23412b944f3d36fefc1056,
title = "Extension de quelques theoremes sur les densites de series d'elements de n a des series de sous-ensembles finis de n",
abstract = "For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm≤nA(m) 2n, d(A) = lim infn→∞ A(n) 2n, where A(m) is the number of subsets Ak ⊆ {1, 2, ..., m}. The collection of all subsets of {1, ..., n} together with the operation a ∪ b, (a ∩ b), (a * b = a ∪ b {minus 45 degree rule} a ∩ b) constitutes a finite semi-group N∪ (semi-group N∩) (group N*). For N∪, N∩ we prove analogues of the Erd{\"o}s-Landau theorem: δ(A+B) ≥ δ(A)(1+(2λ)-1(1-δ(A>))), where B is a base of N of the average order λ. We prove for N∪, N∩, N* analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ≤ 2h, where h is the order of the base. We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erd{\"o}s theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr",
author = "M. Deza and P. Erdős",
year = "1975",
doi = "10.1016/0012-365X(75)90073-4",
language = "English",
volume = "12",
pages = "295--308",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "4",

}

TY - JOUR

T1 - Extension de quelques theoremes sur les densites de series d'elements de n a des series de sous-ensembles finis de n

AU - Deza, M.

AU - Erdős, P.

PY - 1975

Y1 - 1975

N2 - For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm≤nA(m) 2n, d(A) = lim infn→∞ A(n) 2n, where A(m) is the number of subsets Ak ⊆ {1, 2, ..., m}. The collection of all subsets of {1, ..., n} together with the operation a ∪ b, (a ∩ b), (a * b = a ∪ b {minus 45 degree rule} a ∩ b) constitutes a finite semi-group N∪ (semi-group N∩) (group N*). For N∪, N∩ we prove analogues of the Erdös-Landau theorem: δ(A+B) ≥ δ(A)(1+(2λ)-1(1-δ(A>))), where B is a base of N of the average order λ. We prove for N∪, N∩, N* analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ≤ 2h, where h is the order of the base. We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr

AB - For a sequence A = {Ak} of finite subsets of N we introduce: δ(A) = infm≤nA(m) 2n, d(A) = lim infn→∞ A(n) 2n, where A(m) is the number of subsets Ak ⊆ {1, 2, ..., m}. The collection of all subsets of {1, ..., n} together with the operation a ∪ b, (a ∩ b), (a * b = a ∪ b {minus 45 degree rule} a ∩ b) constitutes a finite semi-group N∪ (semi-group N∩) (group N*). For N∪, N∩ we prove analogues of the Erdös-Landau theorem: δ(A+B) ≥ δ(A)(1+(2λ)-1(1-δ(A>))), where B is a base of N of the average order λ. We prove for N∪, N∩, N* analogues of Schnirelmann's theorem (that δ(A) + δ(B) > 1 implies δ(A + B) = 1) and the inequalities λ ≤ 2h, where h is the order of the base. We introduce the concept of divisibility of subsets: a|b if b is a continuation of a. We prove an analog of the Davenport-Erdös theorem: if d(A) > 0, then there exists an infinite sequence {Akr}, where Akr

UR - http://www.scopus.com/inward/record.url?scp=50849149535&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=50849149535&partnerID=8YFLogxK

U2 - 10.1016/0012-365X(75)90073-4

DO - 10.1016/0012-365X(75)90073-4

M3 - Article

VL - 12

SP - 295

EP - 308

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 4

ER -