Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: A functional neuroanatomical review

Z. Lenkei, M. Palkóvits, P. Corvol, C. Llorens-Cortès

Research output: Contribution to journalArticle

319 Citations (Scopus)

Abstract

The discovery that all components of the renin-angiotensin system (RAS) are present in the central nervous system led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurons have been visualized in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular nucleus, and supraoptic nucleus, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood- brain barrier deficient circumventricular organs are rich in angiotensin II receptors. By activating these receptors, circulating angiotensin II may act on central cardiovascular centers via angiotensinergic neurons, providing a link between peripheral and central angiotensin II systems. Among the effector peptides of the brain RAS, angiotensin II and angiotensin III have the same affinity for the two pharmacologically well-defined receptors: type 1 (AT1) and type 2 (AT2). When injected in the brain, these peptides increase blood pressure, water intake, and anterior and posterior pituitary hormone release and may modify memory and learning. The cloning of AT1 and AT2 receptor cDNAs has revealed that these receptors belong to the seven transmembrane domain receptor family. In rodents, two AT1 receptor subtypes, AT1A and AT1B, have been isolated. Using specific riboprobes for in situ hybridization histochemistry, recent studies mapped the distribution of AT1A, AT1B, and AT2 receptor mRNAs in the adult rat and found a predominant expression of AT1A and AT2 mRNA in the brain and of AT1B in the pituitary. Very limited overlap was found between the brain expression of AT1A and AT2 mRNAs. In several functional entities of the brain, such as the preoptic region, the hypothalamus, the olivocerebellary system, and the brainstem baroreflex arc, the colocalization of receptor mRNA, binding sites, and angiotensin immunoreactive nerve terminals suggests local synthesis and expression of angiotensin II receptors. In other areas, such as the bed nucleus of the stria terminalis, the median eminence, or certain parts of the nucleus of the solitary tract, angiotensin II receptors are likely of extrinaic origin. The neuronal expression of AT1A and AT2 receptors was demonstrated in the subfornical organ, the hypothalamus, and the lateral septum. By using double label in situ hybridization, AT1A receptor expression was localized in corticotropin releasing hormone but not in vasopressin containing neurons in the hypothalamus. The information is discussed together with functional data concerning the role of brain angiotensins, in an attempt to provide a better understanding of the physiological and functional roles of each receptor subtype.

Original languageEnglish
Pages (from-to)383-439
Number of pages57
JournalFrontiers in Neuroendocrinology
Volume18
Issue number4
DOIs
Publication statusPublished - Oct 1997

Fingerprint

Angiotensin Type 1 Receptor
Messenger RNA
Angiotensin Receptors
Angiotensins
Brain
Renin-Angiotensin System
Hypothalamus
Neurons
Angiotensin II
In Situ Hybridization
Angiotensin III
Subfornical Organ
Anterior Pituitary Hormones
Lateral Hypothalamic Area
Posterior Pituitary Hormones
Supraoptic Nucleus
Septal Nuclei
Medulla Oblongata
Median Eminence
Peptides

Keywords

  • Anterior pituitary hormones
  • Blood pressure regulation
  • Rat brain
  • Renin-angiotensin system
  • Saltwater homeostasis
  • Vasopressin

ASJC Scopus subject areas

  • Endocrine and Autonomic Systems
  • Endocrinology, Diabetes and Metabolism

Cite this

Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain : A functional neuroanatomical review. / Lenkei, Z.; Palkóvits, M.; Corvol, P.; Llorens-Cortès, C.

In: Frontiers in Neuroendocrinology, Vol. 18, No. 4, 10.1997, p. 383-439.

Research output: Contribution to journalArticle

@article{0b8304d956dc4585acbf30d100020b61,
title = "Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: A functional neuroanatomical review",
abstract = "The discovery that all components of the renin-angiotensin system (RAS) are present in the central nervous system led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurons have been visualized in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular nucleus, and supraoptic nucleus, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood- brain barrier deficient circumventricular organs are rich in angiotensin II receptors. By activating these receptors, circulating angiotensin II may act on central cardiovascular centers via angiotensinergic neurons, providing a link between peripheral and central angiotensin II systems. Among the effector peptides of the brain RAS, angiotensin II and angiotensin III have the same affinity for the two pharmacologically well-defined receptors: type 1 (AT1) and type 2 (AT2). When injected in the brain, these peptides increase blood pressure, water intake, and anterior and posterior pituitary hormone release and may modify memory and learning. The cloning of AT1 and AT2 receptor cDNAs has revealed that these receptors belong to the seven transmembrane domain receptor family. In rodents, two AT1 receptor subtypes, AT1A and AT1B, have been isolated. Using specific riboprobes for in situ hybridization histochemistry, recent studies mapped the distribution of AT1A, AT1B, and AT2 receptor mRNAs in the adult rat and found a predominant expression of AT1A and AT2 mRNA in the brain and of AT1B in the pituitary. Very limited overlap was found between the brain expression of AT1A and AT2 mRNAs. In several functional entities of the brain, such as the preoptic region, the hypothalamus, the olivocerebellary system, and the brainstem baroreflex arc, the colocalization of receptor mRNA, binding sites, and angiotensin immunoreactive nerve terminals suggests local synthesis and expression of angiotensin II receptors. In other areas, such as the bed nucleus of the stria terminalis, the median eminence, or certain parts of the nucleus of the solitary tract, angiotensin II receptors are likely of extrinaic origin. The neuronal expression of AT1A and AT2 receptors was demonstrated in the subfornical organ, the hypothalamus, and the lateral septum. By using double label in situ hybridization, AT1A receptor expression was localized in corticotropin releasing hormone but not in vasopressin containing neurons in the hypothalamus. The information is discussed together with functional data concerning the role of brain angiotensins, in an attempt to provide a better understanding of the physiological and functional roles of each receptor subtype.",
keywords = "Anterior pituitary hormones, Blood pressure regulation, Rat brain, Renin-angiotensin system, Saltwater homeostasis, Vasopressin",
author = "Z. Lenkei and M. Palk{\'o}vits and P. Corvol and C. Llorens-Cort{\`e}s",
year = "1997",
month = "10",
doi = "10.1006/frne.1997.0155",
language = "English",
volume = "18",
pages = "383--439",
journal = "Frontiers in Neuroendocrinology",
issn = "0091-3022",
publisher = "Academic Press Inc.",
number = "4",

}

TY - JOUR

T1 - Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain

T2 - A functional neuroanatomical review

AU - Lenkei, Z.

AU - Palkóvits, M.

AU - Corvol, P.

AU - Llorens-Cortès, C.

PY - 1997/10

Y1 - 1997/10

N2 - The discovery that all components of the renin-angiotensin system (RAS) are present in the central nervous system led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurons have been visualized in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular nucleus, and supraoptic nucleus, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood- brain barrier deficient circumventricular organs are rich in angiotensin II receptors. By activating these receptors, circulating angiotensin II may act on central cardiovascular centers via angiotensinergic neurons, providing a link between peripheral and central angiotensin II systems. Among the effector peptides of the brain RAS, angiotensin II and angiotensin III have the same affinity for the two pharmacologically well-defined receptors: type 1 (AT1) and type 2 (AT2). When injected in the brain, these peptides increase blood pressure, water intake, and anterior and posterior pituitary hormone release and may modify memory and learning. The cloning of AT1 and AT2 receptor cDNAs has revealed that these receptors belong to the seven transmembrane domain receptor family. In rodents, two AT1 receptor subtypes, AT1A and AT1B, have been isolated. Using specific riboprobes for in situ hybridization histochemistry, recent studies mapped the distribution of AT1A, AT1B, and AT2 receptor mRNAs in the adult rat and found a predominant expression of AT1A and AT2 mRNA in the brain and of AT1B in the pituitary. Very limited overlap was found between the brain expression of AT1A and AT2 mRNAs. In several functional entities of the brain, such as the preoptic region, the hypothalamus, the olivocerebellary system, and the brainstem baroreflex arc, the colocalization of receptor mRNA, binding sites, and angiotensin immunoreactive nerve terminals suggests local synthesis and expression of angiotensin II receptors. In other areas, such as the bed nucleus of the stria terminalis, the median eminence, or certain parts of the nucleus of the solitary tract, angiotensin II receptors are likely of extrinaic origin. The neuronal expression of AT1A and AT2 receptors was demonstrated in the subfornical organ, the hypothalamus, and the lateral septum. By using double label in situ hybridization, AT1A receptor expression was localized in corticotropin releasing hormone but not in vasopressin containing neurons in the hypothalamus. The information is discussed together with functional data concerning the role of brain angiotensins, in an attempt to provide a better understanding of the physiological and functional roles of each receptor subtype.

AB - The discovery that all components of the renin-angiotensin system (RAS) are present in the central nervous system led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurons have been visualized in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular nucleus, and supraoptic nucleus, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood- brain barrier deficient circumventricular organs are rich in angiotensin II receptors. By activating these receptors, circulating angiotensin II may act on central cardiovascular centers via angiotensinergic neurons, providing a link between peripheral and central angiotensin II systems. Among the effector peptides of the brain RAS, angiotensin II and angiotensin III have the same affinity for the two pharmacologically well-defined receptors: type 1 (AT1) and type 2 (AT2). When injected in the brain, these peptides increase blood pressure, water intake, and anterior and posterior pituitary hormone release and may modify memory and learning. The cloning of AT1 and AT2 receptor cDNAs has revealed that these receptors belong to the seven transmembrane domain receptor family. In rodents, two AT1 receptor subtypes, AT1A and AT1B, have been isolated. Using specific riboprobes for in situ hybridization histochemistry, recent studies mapped the distribution of AT1A, AT1B, and AT2 receptor mRNAs in the adult rat and found a predominant expression of AT1A and AT2 mRNA in the brain and of AT1B in the pituitary. Very limited overlap was found between the brain expression of AT1A and AT2 mRNAs. In several functional entities of the brain, such as the preoptic region, the hypothalamus, the olivocerebellary system, and the brainstem baroreflex arc, the colocalization of receptor mRNA, binding sites, and angiotensin immunoreactive nerve terminals suggests local synthesis and expression of angiotensin II receptors. In other areas, such as the bed nucleus of the stria terminalis, the median eminence, or certain parts of the nucleus of the solitary tract, angiotensin II receptors are likely of extrinaic origin. The neuronal expression of AT1A and AT2 receptors was demonstrated in the subfornical organ, the hypothalamus, and the lateral septum. By using double label in situ hybridization, AT1A receptor expression was localized in corticotropin releasing hormone but not in vasopressin containing neurons in the hypothalamus. The information is discussed together with functional data concerning the role of brain angiotensins, in an attempt to provide a better understanding of the physiological and functional roles of each receptor subtype.

KW - Anterior pituitary hormones

KW - Blood pressure regulation

KW - Rat brain

KW - Renin-angiotensin system

KW - Saltwater homeostasis

KW - Vasopressin

UR - http://www.scopus.com/inward/record.url?scp=0030864345&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030864345&partnerID=8YFLogxK

U2 - 10.1006/frne.1997.0155

DO - 10.1006/frne.1997.0155

M3 - Article

C2 - 9344632

AN - SCOPUS:0030864345

VL - 18

SP - 383

EP - 439

JO - Frontiers in Neuroendocrinology

JF - Frontiers in Neuroendocrinology

SN - 0091-3022

IS - 4

ER -