Evaluation of density functionals and basis sets for carbohydrates

G. Csonka, Alfred D. French, Glenn P. Johnson, Carlos A. Stortz

Research output: Contribution to journalArticle

126 Citations (Scopus)

Abstract

Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of Rand β-D-allopyranose, 15 of 3,6-anhydro-4-O-methyl-D-galactitol, and four of β-D-glucopyranose. For each set, conformational energies varied by about 7 kcal/mol. Results obtained with the Hartree-Fock method, with pure density functional approximations (DFAs) like LSDA, PBEsol, PBE, and TPSS and with hybrid DFAs like B3PW91, B3LYP, PBEh, and M05-2X, were then compared to the reference and local MP2 relative energies. Basis sets included 6-31G*, 6-31G**, 6-31+G*, 6-31+G**, 6-311+G**, 6-311++G**, cc-pVTZ(-f), cc-pVTZ, and augcc-pVTZ(-f). The smallest basis set that gives good DFA relative energies is 6-31+G**, and more converged results can be obtained with 6-311+G**. The optimized geometries obtained from a smaller basis set, 6-31+G*, were useful for subsequent single point energy calculations with larger basis sets. The best agreement with MP2 was shown by M05-2X, but only when using a dense DFT grid. The popular B3LYP functional is not the best for saccharide conformational studies. The B3PW91 functional gives systematically better results, but other hybrid functionals like PBEh or TPSSh are even better. Overall, the nonempirical PBE GGA and TPSS meta-GGA functionals also performed better than B3LYP.

Original languageEnglish
Pages (from-to)679-692
Number of pages14
JournalJournal of Chemical Theory and Computation
Volume5
Issue number4
DOIs
Publication statusPublished - Apr 14 2009

Fingerprint

carbohydrates
Carbohydrates
functionals
Galactitol
evaluation
Wave functions
Discrete Fourier transforms
Conformations
Gases
approximation
Geometry
energy
grids
wave functions
chemistry
vapor phases
geometry

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry
  • Computer Science Applications

Cite this

Evaluation of density functionals and basis sets for carbohydrates. / Csonka, G.; French, Alfred D.; Johnson, Glenn P.; Stortz, Carlos A.

In: Journal of Chemical Theory and Computation, Vol. 5, No. 4, 14.04.2009, p. 679-692.

Research output: Contribution to journalArticle

Csonka, G. ; French, Alfred D. ; Johnson, Glenn P. ; Stortz, Carlos A. / Evaluation of density functionals and basis sets for carbohydrates. In: Journal of Chemical Theory and Computation. 2009 ; Vol. 5, No. 4. pp. 679-692.
@article{a0143f2a405c4c84b6b3aebe8a2d06f3,
title = "Evaluation of density functionals and basis sets for carbohydrates",
abstract = "Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of Rand β-D-allopyranose, 15 of 3,6-anhydro-4-O-methyl-D-galactitol, and four of β-D-glucopyranose. For each set, conformational energies varied by about 7 kcal/mol. Results obtained with the Hartree-Fock method, with pure density functional approximations (DFAs) like LSDA, PBEsol, PBE, and TPSS and with hybrid DFAs like B3PW91, B3LYP, PBEh, and M05-2X, were then compared to the reference and local MP2 relative energies. Basis sets included 6-31G*, 6-31G**, 6-31+G*, 6-31+G**, 6-311+G**, 6-311++G**, cc-pVTZ(-f), cc-pVTZ, and augcc-pVTZ(-f). The smallest basis set that gives good DFA relative energies is 6-31+G**, and more converged results can be obtained with 6-311+G**. The optimized geometries obtained from a smaller basis set, 6-31+G*, were useful for subsequent single point energy calculations with larger basis sets. The best agreement with MP2 was shown by M05-2X, but only when using a dense DFT grid. The popular B3LYP functional is not the best for saccharide conformational studies. The B3PW91 functional gives systematically better results, but other hybrid functionals like PBEh or TPSSh are even better. Overall, the nonempirical PBE GGA and TPSS meta-GGA functionals also performed better than B3LYP.",
author = "G. Csonka and French, {Alfred D.} and Johnson, {Glenn P.} and Stortz, {Carlos A.}",
year = "2009",
month = "4",
day = "14",
doi = "10.1021/ct8004479",
language = "English",
volume = "5",
pages = "679--692",
journal = "Journal of Chemical Theory and Computation",
issn = "1549-9618",
publisher = "American Chemical Society",
number = "4",

}

TY - JOUR

T1 - Evaluation of density functionals and basis sets for carbohydrates

AU - Csonka, G.

AU - French, Alfred D.

AU - Johnson, Glenn P.

AU - Stortz, Carlos A.

PY - 2009/4/14

Y1 - 2009/4/14

N2 - Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of Rand β-D-allopyranose, 15 of 3,6-anhydro-4-O-methyl-D-galactitol, and four of β-D-glucopyranose. For each set, conformational energies varied by about 7 kcal/mol. Results obtained with the Hartree-Fock method, with pure density functional approximations (DFAs) like LSDA, PBEsol, PBE, and TPSS and with hybrid DFAs like B3PW91, B3LYP, PBEh, and M05-2X, were then compared to the reference and local MP2 relative energies. Basis sets included 6-31G*, 6-31G**, 6-31+G*, 6-31+G**, 6-311+G**, 6-311++G**, cc-pVTZ(-f), cc-pVTZ, and augcc-pVTZ(-f). The smallest basis set that gives good DFA relative energies is 6-31+G**, and more converged results can be obtained with 6-311+G**. The optimized geometries obtained from a smaller basis set, 6-31+G*, were useful for subsequent single point energy calculations with larger basis sets. The best agreement with MP2 was shown by M05-2X, but only when using a dense DFT grid. The popular B3LYP functional is not the best for saccharide conformational studies. The B3PW91 functional gives systematically better results, but other hybrid functionals like PBEh or TPSSh are even better. Overall, the nonempirical PBE GGA and TPSS meta-GGA functionals also performed better than B3LYP.

AB - Correlated ab initio wave function calculations using MP2/aug-cc-pVTZ model chemistry have been performed for three test sets of gas phase saccharide conformations to provide reference values for their relative energies. The test sets consist of 15 conformers of Rand β-D-allopyranose, 15 of 3,6-anhydro-4-O-methyl-D-galactitol, and four of β-D-glucopyranose. For each set, conformational energies varied by about 7 kcal/mol. Results obtained with the Hartree-Fock method, with pure density functional approximations (DFAs) like LSDA, PBEsol, PBE, and TPSS and with hybrid DFAs like B3PW91, B3LYP, PBEh, and M05-2X, were then compared to the reference and local MP2 relative energies. Basis sets included 6-31G*, 6-31G**, 6-31+G*, 6-31+G**, 6-311+G**, 6-311++G**, cc-pVTZ(-f), cc-pVTZ, and augcc-pVTZ(-f). The smallest basis set that gives good DFA relative energies is 6-31+G**, and more converged results can be obtained with 6-311+G**. The optimized geometries obtained from a smaller basis set, 6-31+G*, were useful for subsequent single point energy calculations with larger basis sets. The best agreement with MP2 was shown by M05-2X, but only when using a dense DFT grid. The popular B3LYP functional is not the best for saccharide conformational studies. The B3PW91 functional gives systematically better results, but other hybrid functionals like PBEh or TPSSh are even better. Overall, the nonempirical PBE GGA and TPSS meta-GGA functionals also performed better than B3LYP.

UR - http://www.scopus.com/inward/record.url?scp=65249157077&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65249157077&partnerID=8YFLogxK

U2 - 10.1021/ct8004479

DO - 10.1021/ct8004479

M3 - Article

VL - 5

SP - 679

EP - 692

JO - Journal of Chemical Theory and Computation

JF - Journal of Chemical Theory and Computation

SN - 1549-9618

IS - 4

ER -