Euclidean ramsey theorems. I

P. Erdős, R. L. Graham, P. Montgomery, B. L. Rothschild, J. Spencer, E. G. Straus

Research output: Contribution to journalArticle

65 Citations (Scopus)

Abstract

The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B

Original languageEnglish
Pages (from-to)341-363
Number of pages23
JournalJournal of Combinatorial Theory, Series A
Volume14
Issue number3
DOIs
Publication statusPublished - 1973

Fingerprint

Ramsey's Theorem
Euclidean
Denote
Subset

ASJC Scopus subject areas

  • Discrete Mathematics and Combinatorics
  • Theoretical Computer Science

Cite this

Erdős, P., Graham, R. L., Montgomery, P., Rothschild, B. L., Spencer, J., & Straus, E. G. (1973). Euclidean ramsey theorems. I. Journal of Combinatorial Theory, Series A, 14(3), 341-363. https://doi.org/10.1016/0097-3165(73)90011-3

Euclidean ramsey theorems. I. / Erdős, P.; Graham, R. L.; Montgomery, P.; Rothschild, B. L.; Spencer, J.; Straus, E. G.

In: Journal of Combinatorial Theory, Series A, Vol. 14, No. 3, 1973, p. 341-363.

Research output: Contribution to journalArticle

Erdős, P, Graham, RL, Montgomery, P, Rothschild, BL, Spencer, J & Straus, EG 1973, 'Euclidean ramsey theorems. I', Journal of Combinatorial Theory, Series A, vol. 14, no. 3, pp. 341-363. https://doi.org/10.1016/0097-3165(73)90011-3
Erdős P, Graham RL, Montgomery P, Rothschild BL, Spencer J, Straus EG. Euclidean ramsey theorems. I. Journal of Combinatorial Theory, Series A. 1973;14(3):341-363. https://doi.org/10.1016/0097-3165(73)90011-3
Erdős, P. ; Graham, R. L. ; Montgomery, P. ; Rothschild, B. L. ; Spencer, J. ; Straus, E. G. / Euclidean ramsey theorems. I. In: Journal of Combinatorial Theory, Series A. 1973 ; Vol. 14, No. 3. pp. 341-363.
@article{d31cab0f9c484b84aae187f324a823d7,
title = "Euclidean ramsey theorems. I",
abstract = "The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B",
author = "P. Erdős and Graham, {R. L.} and P. Montgomery and Rothschild, {B. L.} and J. Spencer and Straus, {E. G.}",
year = "1973",
doi = "10.1016/0097-3165(73)90011-3",
language = "English",
volume = "14",
pages = "341--363",
journal = "Journal of Combinatorial Theory - Series A",
issn = "0097-3165",
publisher = "Academic Press Inc.",
number = "3",

}

TY - JOUR

T1 - Euclidean ramsey theorems. I

AU - Erdős, P.

AU - Graham, R. L.

AU - Montgomery, P.

AU - Rothschild, B. L.

AU - Spencer, J.

AU - Straus, E. G.

PY - 1973

Y1 - 1973

N2 - The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B

AB - The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B

UR - http://www.scopus.com/inward/record.url?scp=0039855406&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039855406&partnerID=8YFLogxK

U2 - 10.1016/0097-3165(73)90011-3

DO - 10.1016/0097-3165(73)90011-3

M3 - Article

VL - 14

SP - 341

EP - 363

JO - Journal of Combinatorial Theory - Series A

JF - Journal of Combinatorial Theory - Series A

SN - 0097-3165

IS - 3

ER -