### Abstract

The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B

Original language | English |
---|---|

Pages (from-to) | 341-363 |

Number of pages | 23 |

Journal | Journal of Combinatorial Theory, Series A |

Volume | 14 |

Issue number | 3 |

DOIs | |

Publication status | Published - 1973 |

### Fingerprint

### ASJC Scopus subject areas

- Discrete Mathematics and Combinatorics
- Theoretical Computer Science

### Cite this

*Journal of Combinatorial Theory, Series A*,

*14*(3), 341-363. https://doi.org/10.1016/0097-3165(73)90011-3

**Euclidean ramsey theorems. I.** / Erdős, P.; Graham, R. L.; Montgomery, P.; Rothschild, B. L.; Spencer, J.; Straus, E. G.

Research output: Contribution to journal › Article

*Journal of Combinatorial Theory, Series A*, vol. 14, no. 3, pp. 341-363. https://doi.org/10.1016/0097-3165(73)90011-3

}

TY - JOUR

T1 - Euclidean ramsey theorems. I

AU - Erdős, P.

AU - Graham, R. L.

AU - Montgomery, P.

AU - Rothschild, B. L.

AU - Spencer, J.

AU - Straus, E. G.

PY - 1973

Y1 - 1973

N2 - The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B

AB - The general Ramsey problem can be described as follows: Let A and B be two sets, and R a subset of A × B. For a ε{lunate} A denote by R(a) the set {b ε{lunate} B

UR - http://www.scopus.com/inward/record.url?scp=0039855406&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0039855406&partnerID=8YFLogxK

U2 - 10.1016/0097-3165(73)90011-3

DO - 10.1016/0097-3165(73)90011-3

M3 - Article

VL - 14

SP - 341

EP - 363

JO - Journal of Combinatorial Theory - Series A

JF - Journal of Combinatorial Theory - Series A

SN - 0097-3165

IS - 3

ER -