Equilibrium CO bond lengths

Jean Demaison, Attila G. Császár

Research output: Contribution to journalArticle

19 Citations (Scopus)

Abstract

Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

Original languageEnglish
Pages (from-to)7-14
Number of pages8
JournalJournal of Molecular Structure
Volume1023
DOIs
Publication statusPublished - Sep 12 2012

Keywords

  • AIM theory
  • Ab initio
  • CO bond
  • Equilibrium structure

ASJC Scopus subject areas

  • Analytical Chemistry
  • Spectroscopy
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Equilibrium CO bond lengths'. Together they form a unique fingerprint.

  • Cite this