Abstract
Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/ Interleukin-1R (TIR) domain-containing adapter-inducing interferon-β (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4. Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4. In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors,TRAMor TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the proapoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver.
Original language | English |
---|---|
Pages (from-to) | 26794-26805 |
Number of pages | 12 |
Journal | Journal of Biological Chemistry |
Volume | 291 |
Issue number | 52 |
DOIs | |
Publication status | Published - Dec 23 2016 |
Fingerprint
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology
Cite this
Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. / Iracheta-Vellve, Arvin; Petrasek, Jan; Gyongyosi, Benedek; Satishchandran, Abhishek; Lowe, Patrick; Kodys, Karen; Catalano, Donna; Calenda, Charles D.; Kurt-Jones, Evelyn A.; Fitzgerald, Katherine A.; Szabó, G.
In: Journal of Biological Chemistry, Vol. 291, No. 52, 23.12.2016, p. 26794-26805.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes
AU - Iracheta-Vellve, Arvin
AU - Petrasek, Jan
AU - Gyongyosi, Benedek
AU - Satishchandran, Abhishek
AU - Lowe, Patrick
AU - Kodys, Karen
AU - Catalano, Donna
AU - Calenda, Charles D.
AU - Kurt-Jones, Evelyn A.
AU - Fitzgerald, Katherine A.
AU - Szabó, G.
PY - 2016/12/23
Y1 - 2016/12/23
N2 - Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/ Interleukin-1R (TIR) domain-containing adapter-inducing interferon-β (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4. Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4. In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors,TRAMor TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the proapoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver.
AB - Fibrosis, driven by inflammation, marks the transition from benign to progressive stages of chronic liver diseases. Although inflammation promotes fibrogenesis, it is not known whether other events, such as hepatocyte death, are required for the development of fibrosis. Interferon regulatory factor 3 (IRF3) regulates hepatocyte apoptosis and production of type I IFNs. In the liver, IRF3 is activated via Toll-like receptor 4 (TLR4) signaling or the endoplasmic reticulum (ER) adapter, stimulator of interferon genes (STING). We hypothesized that IRF3-mediated hepatocyte death is an independent determinant of chemically induced liver fibrogenesis. To test this, we performed acute or chronic CCl4 administration to WT and IRF3-, Toll/ Interleukin-1R (TIR) domain-containing adapter-inducing interferon-β (TRIF)-, TRIF-related adaptor molecule (TRAM)-, and STING-deficient mice. We report that acute CCl4 administration to WT mice resulted in early ER stress, activation of IRF3, and type I IFNs, followed by hepatocyte apoptosis and liver injury, accompanied by liver fibrosis upon repeated administration of CCl4. Deficiency of IRF3 or STING prevented hepatocyte death and fibrosis both in acute or chronic CCl4. In contrast, mice deficient in type I IFN receptors or in TLR4 signaling adaptors,TRAMor TRIF, upstream of IRF3, were not protected from hepatocyte death and/or fibrosis, suggesting that the proapoptotic role of IRF3 is independent of TLR signaling in fibrosis. Hepatocyte death is required for liver fibrosis with causal involvement of STING and IRF3. Thus, our results identify that IRF3, by its association with STING in the presence of ER stress, couples hepatocyte apoptosis with liver fibrosis and indicate that innate immune signaling regulates outcomes of liver fibrosis via modulation of hepatocyte death in the liver.
UR - http://www.scopus.com/inward/record.url?scp=85007092773&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007092773&partnerID=8YFLogxK
U2 - 10.1074/jbc.M116.736991
DO - 10.1074/jbc.M116.736991
M3 - Article
C2 - 27810900
AN - SCOPUS:85007092773
VL - 291
SP - 26794
EP - 26805
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
SN - 0021-9258
IS - 52
ER -