Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: Impact of humidity and gas temperature

F. J. Gordillo-Vzquez, Z. Donkó

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

A Boltzmann and Monte Carlo analysis of the electron energy distribution function (EEDF) and transport coefficients for air plasmas is presented for the conditions of the Earth troposphere where some transient luminous events (TLEs) such as blue jets, blue starters and gigantic jets have been observed. According to recent model results (Minschwaner et al 2004 J. Climate 17 1272) supported by the halogen occultation experiment, the relative humidity of the atmospheric air between 0 and 15 km can change between 15% and 100% depending on the altitude investigated and the ground temperature. The latter results cover a region of latitudes between -25°S and +25°N, that is, the Earth tropical region where lightning and TLE activity is quite high. The calculations shown here suggest that the relative humidity has a clear impact on the behaviour of the EEDF and magnitude of the transport coefficients of air plasmas at ground (0 km) and room temperature conditions (293 K). At higher altitudes (11 and 15 km), the influence of the relative humidity is negligible when the values of the gas temperature are assumed to be the 'natural' ones corresponding to those altitudes, that is, ∼215 K (at 11 km) and ∼198 K (at 15 km). However, it is found that a small enhancement (of maximum 100 K) in the background gas temperature (that could be reasonably associated with the TLE activity) would lead to a remarkable impact of the relative humidity on the EEDF and transport coefficients of air plasmas under the conditions of blue jets, blue starters and gigantic jets at 11 and 15 km. The latter effects are visible for relatively low reduced electric fields (E/N ≤ 25 Td) that could be controlling the afterglow kinetics of the air plasmas generated by TLEs. However, for much higher fields such as, for instance, 400 Td (representative of the fields in the streamer coronas and lightning leaders), the impact of increasing the relative humidity and gas temperature is only slightly noticeable in the attachment coefficient that can exhibit an increase of up to one order of magnitude at 11 km and 15 km for temperatures of 313 K and 308 K, respectively. Finally, a brief analysis is carried out on the impact of the gas temperature on the diffusion coefficients of neutrals and ions. The present results show quite reasonable agreement with available measurements in dry and moist air.

Original languageEnglish
Article number034021
JournalPlasma Sources Science and Technology
Volume18
Issue number3
DOIs
Publication statusPublished - Aug 19 2009

ASJC Scopus subject areas

  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Electron energy distribution functions and transport coefficients relevant for air plasmas in the troposphere: Impact of humidity and gas temperature'. Together they form a unique fingerprint.

  • Cite this