Effects of plasma shape on laser blow-off injected impurity transport in TCV

E. Scavino, J. S. Bakos, R. Dux, H. Weisen

Research output: Contribution to journalArticle

15 Citations (Scopus)


The extreme shaping capabilities of the TCV tokamak have been used to investigate the effect of plasma geometry on the confinement of non-recycling trace impurities injected by means of the laser blow-off technique. The progression of the injected silicon in the core of TCV Ohmic limiter plasmas was followed by the 200-channel soft x-ray (SXR) photodiode array with good spatial and temporal resolution. The results show that the plasma triangularity and elongation play an important role in the impurity confinement time, τimp. Remarkably, the increase of elongation from κ = 1.6 to 2.3 produces a threefold reduction of τimp while the electron energy confinement time, τEe, remains almost constant. τimp is fairly constant in the triangularity scan for δ > 0.2, while there is a marked increase for lower values, leading to τimp > 100 ms for negative triangularities. The increase of the toroidal magnetic field, BT, from BT = 0.92 to 1.47 T produces a decrease in the confinement time by almost a factor of 2. Simulation of the evolution of the line-integrated SXR signals, performed by the one-dimensional code STRAHL, provided both central and peripheral values of the transport coefficients together with estimates of the radial profiles. The simulations show that anomalous transport is dominant over neoclassical transport, except near the plasma centre. Interestingly, the convective velocity is positive (outwardly directed) in all limiter cases.

Original languageEnglish
Pages (from-to)1961-1974
Number of pages14
JournalPlasma Physics and Controlled Fusion
Issue number11
Publication statusPublished - Nov 1 2003

ASJC Scopus subject areas

  • Nuclear Energy and Engineering
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Effects of plasma shape on laser blow-off injected impurity transport in TCV'. Together they form a unique fingerprint.

  • Cite this