Effects of enamel matrix proteins on tissue formation along the roots of human teeth

Dieter D. Bosshardt, Anton Sculean, Péter Windisch, Bjarni E. Pjetursson, Niklaus P. Lang

Research output: Contribution to journalArticle

62 Citations (Scopus)


Objective: Enamel matrix-derived proteins (EMD) are thought to trigger the formation of acellular extrinsic fibre cementum (AEFC), while other reports indicate that EMD may have osteogenic potential. The aim of the present study was to characterize the tissues developing on the root surface following application of EMD. Methods: Twelve human periodontitis-affected teeth, scheduled for extraction, were treated with EMD. Two to 6 weeks later, the teeth were extracted, demineralized and processed for embedding in acrylic and epoxy resins. New tissue formation was analysed by light and transmission electron microscopy. Results: New tissue formation on the root was observed in the notch and on both scaled and unscaled root surfaces distant of the notch area in six defects. The newly formed tissues on the root were thick, collagenous, devoid of extrinsic fibres, and had an irregular surface contour. The presence of electron-dense, organic material in the collagenous matrix indicated at least partial mineralization. Embedded cells were numerous and the cells on the matrix surface were very large in size. Abundant rough endoplasmic reticulum and a prominent Golgi complex were evident. The presence of a split between the treated root surfaces and the newly formed tissue was a common observation, as was the presence of bacteria and host cells in the interfacial gap. Conclusion: Following treatment with EMD, a bone-like tissue resembling cellular intrinsic fibre cementum may develop on the root surfaces, instead of AEFC. Furthermore, EMD may both induce de novo formation of a mineralized connective tissue on scaled root surfaces and stimulate matrix deposition on old native cementum. Interfacial bonding appeared to be weak after 6 weeks of healing.

Original languageEnglish
Pages (from-to)158-167
Number of pages10
JournalJournal of Periodontal Research
Issue number2
Publication statusPublished - Apr 1 2005


  • Cementum
  • Enamel matrix proteins
  • Periodontal regeneration
  • Tissue engineering

ASJC Scopus subject areas

  • Periodontics

Fingerprint Dive into the research topics of 'Effects of enamel matrix proteins on tissue formation along the roots of human teeth'. Together they form a unique fingerprint.

  • Cite this