Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients

A combined EEG study using LORETA and omega complexity reversible alterations of brain activity in OSAS

M. Tóth, Bela Faludi, I. Kondákor

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporoparietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.

Original languageEnglish
Pages (from-to)450-460
Number of pages11
JournalBrain Topography
Volume25
Issue number4
DOIs
Publication statusPublished - Oct 2012

Fingerprint

Continuous Positive Airway Pressure
Electromagnetic Phenomena
Electroencephalography
Sleep
Tomography
Brain
Parietal Lobe
Gyrus Cinguli
Therapeutics
Control Groups
Aptitude
Long-Term Memory
Motor Cortex
Obstructive Sleep Apnea
Hippocampus

Keywords

  • CPAP-therapy
  • Electrophysiology
  • LORETA
  • Omega complexity
  • OSAS
  • qEEG

ASJC Scopus subject areas

  • Clinical Neurology
  • Anatomy
  • Neurology
  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Cite this

@article{bda467238c954bebba97852cd65b307d,
title = "Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients: A combined EEG study using LORETA and omega complexity reversible alterations of brain activity in OSAS",
abstract = "Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporoparietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.",
keywords = "CPAP-therapy, Electrophysiology, LORETA, Omega complexity, OSAS, qEEG",
author = "M. T{\'o}th and Bela Faludi and I. Kond{\'a}kor",
year = "2012",
month = "10",
doi = "10.1007/s10548-012-0243-0",
language = "English",
volume = "25",
pages = "450--460",
journal = "Brain Topography",
issn = "0896-0267",
publisher = "Kluwer Academic/Human Sciences Press Inc.",
number = "4",

}

TY - JOUR

T1 - Effects of CPAP-therapy on brain electrical activity in obstructive sleep apneic patients

T2 - A combined EEG study using LORETA and omega complexity reversible alterations of brain activity in OSAS

AU - Tóth, M.

AU - Faludi, Bela

AU - Kondákor, I.

PY - 2012/10

Y1 - 2012/10

N2 - Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporoparietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.

AB - Effects of initiation of continuous positive airway pressure (CPAP) therapy on EEG background activity were investigated in patients with obstructive sleep apnea syndrome (OSAS, N = 25) to test possible reversibility of alterations of brain electrical activity caused by chronic hypoxia. Normal control group (N = 14) was also examined. Two EEG examinations were done in each groups: at night and in the next morning. Global and regional (left vs. right, anterior vs. posterior) measures of spatial complexity (Omega complexity) were used to characterize the degree of spatial synchrony of EEG. Low resolution electromagnetic tomography (LORETA) was used to localize generators of EEG activity in separate frequency bands. Before CPAP-treatment, a significantly lower Omega complexity was found globally and over the right hemisphere. Due to CPAP-treatment, these significant differences vanished. Significantly decreased Omega complexity was found in the anterior region after treatment. LORETA showed a decreased activity in all of the beta bands after therapy in the right hippocampus, premotor and temporo-parietal cortex, and bilaterally in the precuneus, paracentral and posterior cingulate cortex. No significant changes were seen in control group. Comparing controls and patients before sleep, an increased alpha2 band activity was seen bilaterally in the precuneus, paracentral and posterior cingulate cortex, while in the morning an increased beta3 band activity in the left precentral and bilateral premotor cortex and a decreased delta band activity in the right temporoparietal cortex and insula were observed. These findings indicate that effect of sleep on EEG background activity is different in OSAS patients and normal controls. In OSAS patients, significant changes lead to a more normal EEG after a night under CPAP-treatment. Compensatory alterations of brain electrical activity in regions associated with influencing sympathetic outflow, visuospatial abilities, long-term memory and motor performances caused by chronic hypoxia could be reversed by CPAP-therapy.

KW - CPAP-therapy

KW - Electrophysiology

KW - LORETA

KW - Omega complexity

KW - OSAS

KW - qEEG

UR - http://www.scopus.com/inward/record.url?scp=84866909564&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84866909564&partnerID=8YFLogxK

U2 - 10.1007/s10548-012-0243-0

DO - 10.1007/s10548-012-0243-0

M3 - Article

VL - 25

SP - 450

EP - 460

JO - Brain Topography

JF - Brain Topography

SN - 0896-0267

IS - 4

ER -