Effect of selenite on the disposition of arsenate and arsenite in rats

Iván Csanaky, Z. Gregus

Research output: Contribution to journalArticle

47 Citations (Scopus)

Abstract

Selenite (SeIV) and inorganic arsenicals counter the toxicity of each other. SeIV inhibits arsenic methylation in hepatocytes, however, it is unknown whether it decreases the formation of the highly toxic monomethylarsonous acid (MMAsIII). Therefore, we examined, in comparison with the methylation inhibitor periodate-oxidised adenosine (PAD), the effect of SeIV (10 μmol/kg, i.v.) on the appearance of arsenic metabolites in blood, bile and urine as well as the distribution of arsenic metabolites in the liver and kidneys in rats injected i.v. with 50 μmol/kg arsenite (AsIII) or arsenate (AsV). Arsenic metabolites were analysed by HPLC-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). In rats given either arsenical, PAD decreased the excretion and tissue concentrations of methylated arsenic metabolites (MMAsIII, monomethylarsonic acid [MMAsV], and dimethylarsinic acid [DMAsV]), while increasing the tissue retention of AsV and AsIII. The effect of SeIV on arsenic disposition differed significantly from that of PAD. For example, both in AsIII- and AsV-injected animals, SeIV lowered the tissue levels of MMAsIII and MMAsV, but increased the levels of DMAsV. SeIV almost abolished the biliary excretion of MMAsIII in AsV-exposed rats, but barely influenced it in AsIII-dosed rats. The SeIV-induced changes in arsenic disposition may largely be ascribable to formation of the known complex containing trivalent arsenic and selenide (SeII), which not only depends on but also influences the availability and effects of these metalloid species in tissues. By such complexation SeII compromises monomethylation of arsenic when trivalent arsenic availability is limited (e.g. in AsV-exposed rats), but affects it less when the presence of AsIII is overwhelming (e.g. in AsIII-dosed rats). As an auxiliary finding, it is shown that DMAsV occurs in the blood of rats not injected with arsenic and that DMAsV formation in rats can be followed by measuring the build-up of blood-borne DMAsV.

Original languageEnglish
Pages (from-to)33-50
Number of pages18
JournalToxicology
Volume186
Issue number1-2
DOIs
Publication statusPublished - Apr 15 2003

Fingerprint

Selenious Acid
Arsenic
Rats
Metabolites
Tissue
Arsenicals
Blood
Methylation
arsenic acid
arsenite
Metalloids
Availability
Cacodylic Acid
Poisons
Fluorescence Spectrometry
Complexation
Bile
Hydrides
Liver
Spectrometry

Keywords

  • Arsenic
  • Biliary excretion
  • Methylation
  • Periodate-oxidised adenosine
  • Selenite
  • Urinary excretion

ASJC Scopus subject areas

  • Toxicology

Cite this

Effect of selenite on the disposition of arsenate and arsenite in rats. / Csanaky, Iván; Gregus, Z.

In: Toxicology, Vol. 186, No. 1-2, 15.04.2003, p. 33-50.

Research output: Contribution to journalArticle

@article{d0a5870f1b4c4d12a43f544756fbc134,
title = "Effect of selenite on the disposition of arsenate and arsenite in rats",
abstract = "Selenite (SeIV) and inorganic arsenicals counter the toxicity of each other. SeIV inhibits arsenic methylation in hepatocytes, however, it is unknown whether it decreases the formation of the highly toxic monomethylarsonous acid (MMAsIII). Therefore, we examined, in comparison with the methylation inhibitor periodate-oxidised adenosine (PAD), the effect of SeIV (10 μmol/kg, i.v.) on the appearance of arsenic metabolites in blood, bile and urine as well as the distribution of arsenic metabolites in the liver and kidneys in rats injected i.v. with 50 μmol/kg arsenite (AsIII) or arsenate (AsV). Arsenic metabolites were analysed by HPLC-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). In rats given either arsenical, PAD decreased the excretion and tissue concentrations of methylated arsenic metabolites (MMAsIII, monomethylarsonic acid [MMAsV], and dimethylarsinic acid [DMAsV]), while increasing the tissue retention of AsV and AsIII. The effect of SeIV on arsenic disposition differed significantly from that of PAD. For example, both in AsIII- and AsV-injected animals, SeIV lowered the tissue levels of MMAsIII and MMAsV, but increased the levels of DMAsV. SeIV almost abolished the biliary excretion of MMAsIII in AsV-exposed rats, but barely influenced it in AsIII-dosed rats. The SeIV-induced changes in arsenic disposition may largely be ascribable to formation of the known complex containing trivalent arsenic and selenide (SeII), which not only depends on but also influences the availability and effects of these metalloid species in tissues. By such complexation SeII compromises monomethylation of arsenic when trivalent arsenic availability is limited (e.g. in AsV-exposed rats), but affects it less when the presence of AsIII is overwhelming (e.g. in AsIII-dosed rats). As an auxiliary finding, it is shown that DMAsV occurs in the blood of rats not injected with arsenic and that DMAsV formation in rats can be followed by measuring the build-up of blood-borne DMAsV.",
keywords = "Arsenic, Biliary excretion, Methylation, Periodate-oxidised adenosine, Selenite, Urinary excretion",
author = "Iv{\'a}n Csanaky and Z. Gregus",
year = "2003",
month = "4",
day = "15",
doi = "10.1016/S0300-483X(02)00604-2",
language = "English",
volume = "186",
pages = "33--50",
journal = "Toxicology",
issn = "0300-483X",
publisher = "Elsevier Ireland Ltd",
number = "1-2",

}

TY - JOUR

T1 - Effect of selenite on the disposition of arsenate and arsenite in rats

AU - Csanaky, Iván

AU - Gregus, Z.

PY - 2003/4/15

Y1 - 2003/4/15

N2 - Selenite (SeIV) and inorganic arsenicals counter the toxicity of each other. SeIV inhibits arsenic methylation in hepatocytes, however, it is unknown whether it decreases the formation of the highly toxic monomethylarsonous acid (MMAsIII). Therefore, we examined, in comparison with the methylation inhibitor periodate-oxidised adenosine (PAD), the effect of SeIV (10 μmol/kg, i.v.) on the appearance of arsenic metabolites in blood, bile and urine as well as the distribution of arsenic metabolites in the liver and kidneys in rats injected i.v. with 50 μmol/kg arsenite (AsIII) or arsenate (AsV). Arsenic metabolites were analysed by HPLC-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). In rats given either arsenical, PAD decreased the excretion and tissue concentrations of methylated arsenic metabolites (MMAsIII, monomethylarsonic acid [MMAsV], and dimethylarsinic acid [DMAsV]), while increasing the tissue retention of AsV and AsIII. The effect of SeIV on arsenic disposition differed significantly from that of PAD. For example, both in AsIII- and AsV-injected animals, SeIV lowered the tissue levels of MMAsIII and MMAsV, but increased the levels of DMAsV. SeIV almost abolished the biliary excretion of MMAsIII in AsV-exposed rats, but barely influenced it in AsIII-dosed rats. The SeIV-induced changes in arsenic disposition may largely be ascribable to formation of the known complex containing trivalent arsenic and selenide (SeII), which not only depends on but also influences the availability and effects of these metalloid species in tissues. By such complexation SeII compromises monomethylation of arsenic when trivalent arsenic availability is limited (e.g. in AsV-exposed rats), but affects it less when the presence of AsIII is overwhelming (e.g. in AsIII-dosed rats). As an auxiliary finding, it is shown that DMAsV occurs in the blood of rats not injected with arsenic and that DMAsV formation in rats can be followed by measuring the build-up of blood-borne DMAsV.

AB - Selenite (SeIV) and inorganic arsenicals counter the toxicity of each other. SeIV inhibits arsenic methylation in hepatocytes, however, it is unknown whether it decreases the formation of the highly toxic monomethylarsonous acid (MMAsIII). Therefore, we examined, in comparison with the methylation inhibitor periodate-oxidised adenosine (PAD), the effect of SeIV (10 μmol/kg, i.v.) on the appearance of arsenic metabolites in blood, bile and urine as well as the distribution of arsenic metabolites in the liver and kidneys in rats injected i.v. with 50 μmol/kg arsenite (AsIII) or arsenate (AsV). Arsenic metabolites were analysed by HPLC-hydride generation-atomic fluorescence spectrometry (HPLC-HG-AFS). In rats given either arsenical, PAD decreased the excretion and tissue concentrations of methylated arsenic metabolites (MMAsIII, monomethylarsonic acid [MMAsV], and dimethylarsinic acid [DMAsV]), while increasing the tissue retention of AsV and AsIII. The effect of SeIV on arsenic disposition differed significantly from that of PAD. For example, both in AsIII- and AsV-injected animals, SeIV lowered the tissue levels of MMAsIII and MMAsV, but increased the levels of DMAsV. SeIV almost abolished the biliary excretion of MMAsIII in AsV-exposed rats, but barely influenced it in AsIII-dosed rats. The SeIV-induced changes in arsenic disposition may largely be ascribable to formation of the known complex containing trivalent arsenic and selenide (SeII), which not only depends on but also influences the availability and effects of these metalloid species in tissues. By such complexation SeII compromises monomethylation of arsenic when trivalent arsenic availability is limited (e.g. in AsV-exposed rats), but affects it less when the presence of AsIII is overwhelming (e.g. in AsIII-dosed rats). As an auxiliary finding, it is shown that DMAsV occurs in the blood of rats not injected with arsenic and that DMAsV formation in rats can be followed by measuring the build-up of blood-borne DMAsV.

KW - Arsenic

KW - Biliary excretion

KW - Methylation

KW - Periodate-oxidised adenosine

KW - Selenite

KW - Urinary excretion

UR - http://www.scopus.com/inward/record.url?scp=0037447611&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037447611&partnerID=8YFLogxK

U2 - 10.1016/S0300-483X(02)00604-2

DO - 10.1016/S0300-483X(02)00604-2

M3 - Article

C2 - 12604169

AN - SCOPUS:0037447611

VL - 186

SP - 33

EP - 50

JO - Toxicology

JF - Toxicology

SN - 0300-483X

IS - 1-2

ER -